|本期目录/Table of Contents|

[1]李超,罗晓容.泥岩化学压实作用研究进展[J].地球科学与环境学报,2017,39(06):761-772.
 LI Chao,LUO Xiao-rong.Review on Mudstone Chemical Compaction[J].Journal of Earth Sciences and Environment,2017,39(06):761-772.
点击复制

泥岩化学压实作用研究进展(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第39卷
期数:
2017年第06期
页码:
761-772
栏目:
基础地质与矿产地质
出版日期:
2017-11-15

文章信息/Info

Title:
Review on Mudstone Chemical Compaction
文章编号:
1672-6561(2017)06-0761-12
作者:
李超罗晓容
1.中国科学院地质与地球物理研究所,北京 100029; 2.中国科学院地球科学研究院,北京 100029; 3.中国科学院大学,北京 100049
Author(s):
LI Chao LUO Xiao-rong
1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
化学压实作用黏土矿物蒙脱石向伊利石转化结构变化应力转移压实曲线测井响应
Keywords:
chemical compaction clay mineral smectite-illite transition structure change load transfer compaction curve logging response
分类号:
P584
DOI:
-
文献标志码:
A
摘要:
埋藏过程中,泥岩化学压实作用在岩石孔隙演化、微观结构及异常压力形成中起着非常重要的作用,但目前对于泥岩化学压实作用研究还十分薄弱。系统总结了泥岩化学压实作用机理、化学压实作用导致的泥岩结构变化、化学压实作用地球物理响应及判识等方面的最新研究进展,并讨论了泥岩化学压实作用研究中的几个关键问题。结果表明:化学压实作用受化学动力学控制,温度、时间及矿物成分是最主要的影响因素,蒙脱石向伊利石转化是泥岩中最普遍和最重要的化学压实作用;化学压实作用过程中,黏土矿物层间水转化为自由水导致的体积膨胀可能并不明显,但是蒙脱石向伊利石转化可能引起骨架弱化、有效应力转移效应,伴随黏土成岩过程的硅质胶结和结构变化将显著降低泥岩渗透率,并可能明显改变泥岩压实系数;蒙脱石向伊利石转化导致泥岩有效应力-孔隙度关系变化,使得压实曲线从蒙脱石曲线向伊利石曲线转换,测井响应上表现为声波时差减小和密度增大的趋势。目前,泥岩化学压实作用研究中仍需进一步深入的问题主要包括化学压实作用与黏土矿物结构、有机质对泥岩压实作用的影响、化学压实作用与泥岩流变学特征、化学欠压实与化学压实不平衡以及化学成岩泥岩超压预测方法等。
Abstract:
Mudstone chemical compaction plays a very important role in the pore evolution, microstructure and formation of abnormal pressure, but there has been weak research on it so far. Recent research progresses about mudstone chemical compaction were systematically summarized, including action mechanism, mudstone texture changes, well logging interpretation and identification; finally, the key issues in mudstone chemical compaction were discussed. The results show that the chemical compaction mainly refers to smectite-illite transition, which is controlled by chemical kinetics and affected by temperature, time and mineral composition; it may be not obvious that the bulk volume expansion is caused by the conversion of interlayer water into intergranular water in clay mineral, and the chemical compaction may cause skeletal weakening and the effective stress transfer; the siliceous cementation and aligned clay mineral fabric significantly reduce the permeability of mudstone, and may obviously alter the mudstone compaction coefficient during clay diagenesis process; the smectite-illite transition causes the change of the relationship between effective stress and porosity of mudstone, and the logging response shows decreasing acoustic value and increasing density value; in addition, the mudstone chemical compaction shows higher speed ratio of longitudinal and transverse waves(Vp/Vs), and lower wave impedance and shear modulus. Some key problems in mudstone chemical compaction still need to be further studied, including the chemical compaction and the structure of clay mineral, the effect of organic matter on mudstone chemical compaction, the chemical compaction and characteristics of mudstone rheology, the difference between chemical undercompaction and compaction disequilibrium, and the prediction method of mudstone overpressure in the process of chemical diagenesis.

参考文献/References:

-

相似文献/References:

[1]金章东.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报,2011,33(01):34.
 JIN Zhang-dong.Composition, Origin and Environmental Interpretation of Minerals in Lake Sediments and Recent Progress[J].Journal of Earth Sciences and Environment,2011,33(06):34.
[2]杨新强,陈效民,李孝良,等.西南喀斯特地区不同石漠化阶段土壤黏土矿物组成及其含量变异研究[J].地球科学与环境学报,2011,33(04):416.
 YANG Xin-qiang,CHEN Xiao-min,LI Xiao-liang,et al.Study on Composition and Content Variation of Clay Mineral of Soil Under Different Stages of Rock Desertification in Karst Region, Southwest China[J].Journal of Earth Sciences and Environment,2011,33(06):416.

备注/Memo

备注/Memo:
收稿日期:2017-10-20
基金项目:国家科技重大专项项目(2017ZX05008-004);国家自然科学基金项目(41372151);中国科学院A类战略性先导科技专项项目(XDA14010202)
作者简介:李 超(1989-),男,山东淄博人,中国科学院大学理学博士研究生,E-mail:lichaocpu@126.com。
通讯作者:罗晓容(1959-),男,四川成都人,研究员,博士研究生导师,理学博士,E-mail:luoxr@mail.iggcas.ac.cn。
更新日期/Last Update: 2017-12-15