|本期目录/Table of Contents|

[1]李振炫*,冯添禧,吴超越,等.低分子量有机酸(苹果酸)对方解石-氟的吸附/沉淀反应影响[J].地球科学与环境学报,2024,46(04):499-512.[doi:10.19814/j.jese.2023.12013]
 LI Zhen-xuan*,FENG Tian-xi,WU Chao-yue,et al.Effect of Malic Acid on the Adsorption/Precipitation Reaction of Calcite with Fluorine[J].Journal of Earth Sciences and Environment,2024,46(04):499-512.[doi:10.19814/j.jese.2023.12013]
点击复制

低分子量有机酸(苹果酸)对方解石-氟的吸附/沉淀反应影响(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第46卷
期数:
2024年第04期
页码:
499-512
栏目:
环境与可持续发展
出版日期:
2024-07-15

文章信息/Info

Title:
Effect of Malic Acid on the Adsorption/Precipitation Reaction of Calcite with Fluorine
文章编号:
1672-6561(2024)04-0499-14
作者:
李振炫12*冯添禧12吴超越3张大鹏3王 逸3朱 珠12桂尉竣12向育斌4David DECROOCQ5
(1. 南京信息工程大学 江苏省大气环境与装备技术协同创新中心/江苏省大气环境监测与污染控制高技术重点 实验室,江苏 南京 210044; 2. 南京信息工程大学 气候与环境变化教育部国际合作联合实验室,江苏 南京 210044; 3. 生态环境部南京环境科学研究所,江苏 南京 210042; 4. 南京信息工程大学 化学与材料学院,江苏 南京 210044; 5. 里尔大学 地球科学学院,诺尔 里尔 59650)
Author(s):
LI Zhen-xuan12* FENG Tian-xi12 WU Chao-yue3 ZHANG Da-peng3 WANG Yi3 ZHU Zhu12GUI Wei-jun12 XIANG Yu-bin4 David DECROOCQ5
(1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology/Jiangsu Key Laboratory of AtmosphericEnvironment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 2. Joint International Research Laboratory of Climate and Environment Change(ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 3. Nanjing Institute of Environmental Sciences,Ministry ofEcology andEnvironment, Nanjing 210042, Jiangsu, China; 4. School of Chemistry andMaterials,Nanjing University of InformationScience & Technology, Nanjing 210044,Jiangsu, China; 5. Département desSciences de la Terre, Université de Lille, Lille 59650, Nord, France)
关键词:
方解石 苹果酸 溶液化学 吸附 溶解 络合 沉淀
Keywords:
calcite fluorine malic acid solution chemistry adsorption dissolution complex precipitation
分类号:
X703.1
DOI:
10.19814/j.jese.2023.12013
文献标志码:
A
摘要:
低分子量有机酸常对矿物的表面反应(吸附/沉淀)产生影响,从而影响矿物的溶解、矿化等过程,进而影响环境地球化学进程中元素的迁移稳定性。苹果酸作为一种广泛存在于自然界中的有机酸,是植物通过代谢过程分泌的副产品。通过批量平衡法开展了苹果酸对方解石-氟的吸附/沉淀反应的影响研究,旨在深入理解有机酸在地球化学过程中的作用。结果表明:①初始pH值为7.7条件下,对于低浓度氟(≤5 mg?L-1),随着苹果酸浓度的升高,其对氟去除的抑制作用呈增强趋势; 对于中、高浓度氟(25或60 mg?L-1),氟去除主导机制为CaF2沉淀反应,苹果酸的抑制作用对其影响不大,但其表面吸附反应导致pH值升高和钙浓度下降。②初始pH值为8.3条件下,对于低浓度氟(≤20 mg?L-1),苹果酸对氟去除仍有抑制作用; 苹果酸与Ca2+的络合反应促使pH值和钙浓度上升; 对于中浓度氟(60 mg?L-1),氟去除主导机制为CaF2沉淀反应,20 mg?L-1苹果酸已对其产生抑制作用,随着苹果酸浓度继续升高,pH值先降后升,钙浓度持续上升,彰显了苹果酸络合反应的效应; 对于高浓度氟(100 mg?L-1),100 mg?L-1苹果酸能极大抑制CaF2沉淀反应,对应的pH值未超过无苹果酸时,对应的钙浓度仍低于其空白背景值,暗示了CaF2沉淀反应的主导性。③初始pH值为8.7条件下,对于低浓度氟(≤5 mg?L-1),苹果酸对氟去除的抑制作用有所减弱,但其络合反应产生的效应十分显著,导致pH值和钙浓度上升; 对于高浓度氟(240 mg?L-1),氟去除主导机制为CaF2沉淀反应,该反应随着苹果酸浓度的升高而受到抑制,对应的钙浓度不断上升彰显苹果酸络合反应的效应,而pH值的下降也表明了CaF2沉淀反应的主导性。本研究深入探讨了氟元素在方解石矿物界面上的吸附、迁移和转化过程,为理解氟的迁移稳定性提供了新的视角和理论基础,同时对富含有机酸环境中方解石矿物的稳定性评估具有重要意义,也为氟在其他矿物上的迁移转化研究提供借鉴。
Abstract:
Low molecular weight organic acids often influence the surface reactions(adsorption/precipitation)of minerals, which in turn affect the stability of elemental transport in environmental geochemical processes. The effect of malic acid on calcite-fluorine adsorption/precipitation reactions was investigated. The results show that ① at the initial pH of 7.7 and lower F concentrations(≤5 mg?L-1), as the concentration of malic acid increases, its surface adsorption capacity becomes stronger and exhibits the inhibitory effects on F removal; at the F concentrations of 25 or 60 mg?L-1, the dominant mechanism of F removal is CaF2 precipitation; the intervention of malic acid shows little inhibition of the CaF2 precipitation reaction; the stronger adsorption reaction of malic acid results in an increase of pH and a decrease in Ca concentration. ② At the initial pH of 8.3 and low F concentration(≤20 mg?L-1), malic acid still inhibits F removal through its competitive adsorption; as the concentration of malic acid increases, its effect of complexation with Ca2+ results in a constant increase in pH and Ca concentration; at the medium F concentration of 60 mg?L-1, the dominant mechanism of F removal has been shifted to CaF2 precipitation; 20 mg?L-1 malic acid has inhibited it, and as the malic acid continues to increase, the pH value decreases and then increases, and the Ca concentration continues to increase, highlighting the effect of the malic acid complexation reaction; At high F concentration of 100 mg?L-1, 100 mg?L-1 malic acid greatly inhibits the CaF2 precipitation reaction, corresponding to a pH value that do not exceed that of the malic acid-free condition; the corresponding Ca concentration is still lower than its blank background value, implying the dominance of the CaF2 precipitation reaction. ③ At the initial pH of 8.7, malic acid has a weak inhibition toFremovalat low F concentration(≤5 mg?L-1); however, as the concentration of malic acid increases, the effect of its complexation reaction becomes much clearer, which results in a significant increase in both pH and Ca concentration; at high F concentration of 240 mg?L-1, the dominant mechanism forF removal is the CaF2 precipitation reaction, which is inhibited with increasing malic acid concentration, with increasing Ca concentration showing the effect of malic acid complexation, and decreasing pH values indicating the dominance of the CaF2 precipitation reaction. This study is important for the stability assessment of calcite minerals in organic acid-rich environments, and also provides a reference for the study of fluorine transport transformation on other minerals.

参考文献/References:

[1] 何令令,何守阳,陈琢玉,等.环境中氟污染与人体氟效应[J].地球与环境,2020,48(1):87-95.
HE Ling-ling,HE Shou-yang,CHEN Zhuo-yu,et al.Fluorine Pollution in the Environment and Human Fluoride Effect[J].Earth and Environment,2020,48(1):87-95.
[2]张宇琦,徐惠风,文波龙,等.环境中的氟及其环境效应与污染治理[J].农业资源与环境学报,2024,41(1):164-174.
ZHANG Yu-qi,XU Hui-feng,WEN Bo-long,et al.Environmental Fluorine:Effects and Pollution Mana-gement[J].Journal of Agricultural Resources and Environment,2024,41(1):164-174.
[3]王 渊.粤东某地氟病区氟的来源与迁移转化途径研究[J].安全与环境工程,2019,26(6):1-7.
WANG Yuan.Preliminary Study on the Origin,Migration and Transformation of Fluorine in a Fluorine Disease Area in Eastern Guangdong Province[J].Safety and Environmental Engineering,2019,26(6):1-7.
[4]田 键,刘 旻,胡 攀,等.我国碳酸钙产业发展与资源梯级高值高效利用思考[J].矿产保护与利用,2020,40(6):109-116.
TIAN Jian,LIU Min,HU Pan,et al.Thoughts on the Development of Calcium CarbonateIndustry and the High-value and High-efficiency Utilization of Resources in China[J].Conservation and Utilization of Mineral Resources,2020,40(6):109-116.
[5]袁长江,申锡坤,杨 晓,等.碳酸钙矿石及其产品质量指标研究[J].中国非金属矿工业导刊,2023(4):53-56,75.
YUAN Chang-jiang,SHEN Xi-kun,YANG Xiao,et al.Mineral Product Characteristics and Ore Quality Indexes of Calcium Carbonate[J].China Non-metallic Minerals Industry,2023(4):53-56,75.
[6]HU X Y,ZHU F,KONG L H,et al.A Novel Precipitant for the Selective Removal of Fluoride Ion from Strongly Acidic Wastewater:Synthesis,Efficiency,and Mechanism[J].Journal of Hazardous Materials,2021,403:124039.
[7]SLEAP S B,TURNER B D,KRABBENHOFT K,et al.Effects of ρCO2 on the Removal of Fluoride from Wastewater by Calcite[J].Journal of Environmental Engineering,2013,139(8):1053-1061.
[8]SLAVEK J,FARRAH H,PICKERING W F.Interaction of Clays with Dilute Fluoride Solutions[J].Water,Air,and Soil Pollution,1984,23(2):209-220.
[9]PICKERING W F.The Mobility of Soluble Fluoride in Soils[J].Environmental Pollution Series B,Chemical and Physical,1985,9(4):281-308.
[10]TURNER B D,BINNING P,STIPP S L S.Fluoride Removal by Calcite:Evidence for Fluorite Precipitation and Surface Adsorption[J].Environmental Science & Technology,2005,39(24):9561-9568.
[11]YANG T,HUH W,JHO J Y,et al.Effects of Fluo-ride and Polymeric Additives on the Dissolution of Calcite and the Subsequent Formation of Fluorite[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,451:75-84.
[12]施 奇,卢 杰.根系分泌物的影响因素及对植物的影响研究概况[J].农业与技术,2023,43(11):13-17.
SHI Qi,LU Jie.Overview of Research on Factors Influencing Root Secretions and their Effects on Plants[J].Agriculture and Technology,2023,43(11):13-17.
[13]蔡建林,TENG H H,王钺博,等.方解石和钾长石在模拟蚯蚓肠液中的初始溶解动力学机理及意义[J].岩石矿物学杂志,2022,41(4):818-834.
CAI Jian-lin,TENG H H,WANG Yue-bo,et al.Kinetics and Mechanistic Implications of Calcite and K-feldspar Initial Dissolution in Simulated Earthworm Intestine Fluid[J].Acta Petrologica et Mineralogica,2022,41(4):818-834.
[14]杨 飞,申志超,杜江民,等.有机酸对致密砂岩中黏土矿物的选择性溶蚀研究[J].岩矿测试,2023,42(3):478-490.
YANG Fei,SHEN Zhi-chao,DU Jiang-min,et al.Selective Dissolution of Clay Minerals in Tight Sandstone by Organic Acids[J].Rock and Mineral Analysis,2023,42(3):478-490.
[15]DI LORENZO M L,ERRICO M E,AVELLA M.Thermal and Morphological Characterization of Poly(Ethylene Terephthalate)/Calcium Carbonate Nanocomposites[J].Journal of Materials Science,2002,37(11):2351-2358.
[16]UKRAINCZYK M,STELLING J,VUCAK M,et al.Influence of Etidronic Acid and Tartaric Acid on the Growth of Different Calcite Morphologies[J].Journal of Crystal Growth,2013,369:21-31.
[17]谢忠雷,孙文田,郭 平,等.苹果酸和丁二酸对茶园土壤氟吸附能力及形态分布的影响[J].吉林大学学报(理学版),2009,47(2):392-396.
XIE Zhong-lei,SUN Wen-tian,GUO Ping,et al.Effects of Malic Acid and Succinic Acid on Sorption and Distribution of Fluoride in Tea Garden Soil[J].Journal of Jilin University(Science Edition),2009,47(2):392-396.
[18]刘春丽,谢忠雷.柠檬酸和草酸对茶园土壤氟吸附能力及形态分布的影响[J].河南师范大学学报(自然科学版),2009,37(4):84-86.
LIU Chun-li,XIE Zhong-lei.Effects of Citric Acid and Oxalic Acid on Adsorption Capacity and Distribution of Fluoride in Tea Garden Soil[J].Journal of Henan Normal University(Natural Science),2009,37(4):84-86.
[19]徐仁扣,王亚云,赵安珍.低分子量有机酸对可变电荷土壤吸附性氟解吸的影响[J].土壤,2003,35(5):392-396.
XU Ren-kou,WANG Ya-yun,ZHAO An-zhen.Effect of Low-molecular-weight Organic Acids on Desorption of Adsorbed F from Variable Charge Soils[J].Soils,2003,35(5):392-396.
[20]刘腾腾,赵 强,郜红建,等.有机酸与根表铁膜对茶树吸收和富集氟的影响[J].南京农业大学学报,2013,36(1):72-78.
LIU Teng-teng,ZHAO Qiang,GAO Hong-jian,et al.Effects of Organic Acids and Iron Plaque Outside Roots on Absorption and Accumulation of Fluoride in Tea Plants[J].Journal of Nanjing Agricultural University,2013,36(1):72-78.
[21]MUHOZA E,GIBSON K,ZHANG W C,et al.Evaluation of Lactic and Succinic Acids as Green Depressants for Selective Flotation Separation of Bastnaesite from Calcite[J].Minerals Engineering,2023,204:108435.
[22]STROBEL B W.Influence of Vegetation on Low-molecular-weight Carboxylic Acids in Soil Solution:A Review[J].Geoderma,2001,99(3/4):169-198.
[23]GEFFROY C,FOISSY A,PERSELLO J,et al.Surface Complexation of Calcite by Carboxylates in Water[J].Journal of Colloid and Interface Science,1999,211(1):45-53.
[24]闫志为,刘辉利,张志卫.温度及CO2对方解石、白云石溶解度影响特征分析[J].中国岩溶,2009,28(1):7-10.
YAN Zhi-wei,LIU Hui-li,ZHANG Zhi-wei.Influences of Temperature and ρCO2 on the Solubility of Calcite and Dolomite[J].Carsologica Sinica,2009,28(1):7-10.
[25]VAN CAPPELLEN P,CHARLET L,STUMM W,et al.A Surface Complexation Model of the Carbonate Mineral-aqueous Solution Interface[J].Geochimica et Cosmochimica Acta,1993,57(15):3505-3518.
[26]王晓蓉.环境化学[M].南京:南京大学出版社,1993.
WANG Xiao-rong.Environmental Chemistry[M].Nanjing:Nanjing University Press,1993.
[27]LI Z X,SUN X W,HUANG L D,et al.Phosphate Adsorption and Precipitation on Calcite Under Calco-carbonic Equilibrium Condition [J].Chemosphere,2017,183:419-428.
[28]GUSTAFSSON J P.Visual MINTEQ Ver.3.1[EB/OL].(2013-12-21)[2023-12-08].http://www2.lwr.kth.se/English /Oursoftware/vminteq/download.html.
[29]李振炫,朱 珠,华 辰,等.开放系统下方解石除氟机制的主导性界定研究[J].环境科学与技术,2023,46(5):1-9.
LI Zhen-xuan,ZHU Zhu,HUA Chen,et al.Study on Delimiting the Dominance of the Removal Mechanisms of Fluoride by Calcite in Open System[J].Environmental Science & Technology,2023,46(5):1-9.
[30]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992,29(1):80-86.
SHEN Ren-fang,JIANG Bai-fan.Distribution and Availability of Various Forms of Inorganic-P in Calcareous Soils[J].Acta Pedologica Sinica,1992,29(1):80-86.
[31]李振炫,桂尉竣,苏 畅,等.方解石与柠檬酸/酒石酸模拟实验中的反应规律[J].地球科学与环境学报,2023,45(6):1398-1413.
LI Zhen-xuan,GUI Wei-jun,SU Chang,et al.Reaction Pattern of Calcite with Citric Acid/Tartaric Acid in Simulation Experiments[J].Journal of Earth Sciences and Environment,2023,45(6):1398-1413.
[32]刘永红,马舒威,岳霞丽,等.土壤环境中的小分子有机酸及其环境效应[J].华中农业大学学报,2014,33(2):133-138.
LIU Yong-hong,MA Shu-wei,YUE Xia-li,et al.Low Molecular Weight Organic Acids in Soils and Its Environmental Effects[J].Journal of Huazhong Agricultural University,2014,33(2):133-138.
[33]JANUSZ W, SKWAREK E.Adsorption of Malic Acid at the Hydroxyapatite/Aqueous NaCl Solution Interface[J].Applied Nanoscience,2022,12(4):1355-1363.
[34]孙晓雯.低分子量有机酸对方解石固磷的影响[D].南京:南京信息工程大学,2020.
SUN Xiao-wen.Effects of Low Molecular Weight Organic Acids on Phosphorus Fixation by Calcite[D].Nanjing:Nanjing University of Information Science & Technology,2020.
[35]姜 科.诱导结晶法回收和去除氟化盐工业废水中的氟[D].长沙:中南大学,2014.
JIANG Ke.Recovery and Removal of Fluoride from Fluorine Industrial Wastewater by Crystallization Process[D].Changsha:Central South University,2014.
[36]GB 7484—87,水质 氟化物的测定 离子选择电极法[S].
GB 7484—87, Water Quality—Determination of Fluoride—Ion Selective Electrode Method[S].
[37]MOLLER P,SASTRI C S.Estimation of the Number of Surface Layers of Calcite Involved in Ca-45Ca Isotopic Exchange with Solution[J].Zeitschrift für Physikalische Chemie,1974,89(1/2/3/4):80-87.
[38]LI Z X,GUO M X,SUN X W,et al.High Concentration Phosphate Removal by Calcite and Its Subsequent Utilization for Tetracycline Removal[J].Journal of Water Process Engineering,2020,37:101412.
[39]陈景奎,于群英,鲁红侠.低分子有机酸对土壤氟吸附的影响[J].农村生态环境,2001,17(2):53-55.
CHEN Jing-kui,YU Qun-ying,LU Hong-xia.Effect of Low-molecule Organic Acids on Soil Adsorption of Fluoride[J].RuralEco-environment,2001,17(2):53-55.
[40]LI Z X,XIAO J T,HUANG L D,et al.Comparative Study of Carboxylic Acid Adsorption on Calcite:L-malic Acid,D-malic Acid and Succinic Acid[J].Carbonates and Evaporites,2019,34(3):1131-1139.
[41]吴大清,彭金莲,刁桂仪,等.沉积CaCO3与金属离子界面反应动力学研究[J].地球化学,2000,29(1):56-61.
WU Da-qing,PENG Jin-lian,DIAO Gui-yi,et al.Kinetic Study of the Interface Reactions Between Metal Ions and Sediment CaCO3[J].Geochimica,2000,29(1):56-61.
[42]BUDYANTO S,KUO Y L,LIU J C.Adsorption and Precipitation of Fluoride on Calcite Nanoparticles:A Spectroscopic Study[J].Separation and Purification Technology,2015,150:325-331.

相似文献/References:

[1]黄成刚,袁剑英,曹正林,等.咸化湖盆中酸性流体对碎屑岩储层的改造作用[J].地球科学与环境学报,2014,36(03):52.
 HUANG Cheng-gang,YUAN Jian-ying,CAO Zheng-lin,et al.Reconstruction of Acid Fluid on Clastic Reservoir in Saline Lacustrine Basin[J].Journal of Earth Sciences and Environment,2014,36(04):52.
[2]李金宝,车明,李鑫,等.鄂尔多斯盆地东胜铀矿成矿作用研究[J].地球科学与环境学报,2006,28(02):37.
 LI Jin-bao,CHE Ming,LI Xin,et al.Preliminary Study onMetallization of Dongsheng UOre in Ordos Basin[J].Journal of Earth Sciences and Environment,2006,28(04):37.
[3]郝启勇,徐晓天,张心彬,等.鲁西北阳谷地区浅层高氟地下水化学特征及成因[J].地球科学与环境学报,2020,42(05):668.[doi:10.19814/j.jese.2020.04033]
 HAO Qi-yong,XU Xiao-tian,ZHANG Xin-bin,et al.Hydrochemical Characteristics and Genesis of High-fluorine Shallow Groundwater in Yanggu Area of the Northwestern Shandong, China[J].Journal of Earth Sciences and Environment,2020,42(04):668.[doi:10.19814/j.jese.2020.04033]
[4]李振炫,桂尉竣,苏 畅,等.方解石与柠檬酸/酒石酸模拟实验中的反应规律[J].地球科学与环境学报,2023,45(06):1398.[doi:10.19814/j.jese.2023.06028]
 LI Zhen-xuan,GUI Wei-jun,SU Chang,et al.Reaction Pattern of Calcite with Citric Acid/Tartaric Acid in Simulation Experiments[J].Journal of Earth Sciences and Environment,2023,45(04):1398.[doi:10.19814/j.jese.2023.06028]

备注/Memo

备注/Memo:
收稿日期:2023-12-08; 修回日期:2024-05-17投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41303096,41201515); 江苏省环保项目(2022016); 教育部留学回国人员科研启动基金项目(S131304001); 江苏省自然科学基金项目(BK20210655)
*通信作者:李振炫(1981-),男,江苏靖江人,副教授,工学博士,E-mail:zhenxuan325@163.com。
通信作者:吴超越(1993-),女,江苏如皋人,助理研究员,E-mail:wuchaoyue1206@163.com。
更新日期/Last Update: 2024-08-20