|本期目录/Table of Contents|

[1]罗 肖,程谦恭*,王玉峰,等.粒径对岩崩-碎屑流滑震特征的影响[J].地球科学与环境学报,2023,45(01):118-130.[doi:10.19814/j.jese.2022.10002]
 LUO Xiao,CHENG Qian-gong*,WANG Yu-feng,et al.Landquakes Generated by Debris Falls with Different Particle Sizes[J].Journal of Earth Sciences and Environment,2023,45(01):118-130.[doi:10.19814/j.jese.2022.10002]
点击复制

粒径对岩崩-碎屑流滑震特征的影响(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第01期
页码:
118-130
栏目:
工程地质与环境灾害
出版日期:
2023-01-15

文章信息/Info

Title:
Landquakes Generated by Debris Falls with Different Particle Sizes
文章编号:
1672-6561(2023)01-0118-13
作者:
罗 肖1程谦恭12*王玉峰12李天话1
(1. 西南交通大学 地质工程系,四川 成都 611756; 2. 西南交通大学 高速铁路运营安全空间信息技术国家地方联合工程实验室,四川 成都 611756)
Author(s):
LUO Xiao1 CHENG Qian-gong12* WANG Yu-feng12 LI Tian-hua1
(1. Department of Geological Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China; 2. State-province Joint Engineering Laboratory of Spatial Information Technology for High-speed Railway Safety, Southwest Jiaotong University, Chengdu 611756, Sichuan, China)
关键词:
地质灾害 岩崩-碎屑流 颗粒流 物理模型实验 滑震 环境地震学 地震动信号 参数反演
Keywords:
geological hazard debris fall granular flow physical model experiment landquake environmental seismology seismic signal parameter inversion
分类号:
P694; P642.21
DOI:
10.19814/j.jese.2022.10002
文献标志码:
A
摘要:
岩崩-碎屑流是一种发生在高山峡谷地区,具有高位性、隐蔽性、事件突发性和灾害巨大危害性等特征的地质灾害,滑震信号监测可实现对地质灾害体运动信息的实时捕获,为灾害预警及灾后评估提供重要信息。以颗粒集合体崩落运动过程为研究对象,设计并开展了物理模型实验,分析了颗粒粒径对滑震信号特征的影响,探讨了岩崩-碎屑流撞击过程产生的滑震信号特征及其现实意义。结果表明:①颗粒集合体总质量一定时,滑震信号最大振幅值为17.33g~39.21g,且随着颗粒粒径的增大而增大; ②颗粒集合体总质量一定时,滑震信号包络线平均值、阿里亚斯强度随着颗粒粒径的增大而增大; ③粒径为2~4 mm的颗粒集合体产生的滑震信号平均频率为16.95~23.02 kHz,且在总质量一定时,滑震信号的平均频率随着颗粒粒径的增大而减小。本文研究成果以期进一步加深对滑震信号影响因素的认识,并为灾害潜在区域监测预警系统建立、重大地质灾害灾后快速评估、应急响应措施制定等提供理论依据。
Abstract:
Debris fall, which is a kind of geological disaster with high position and concealment characteristics, often develops in mountainous areas and occurs suddenly. It poses a great threat to the safety of downstream constructions and persons. Compared with traditional monitoring methods, the seismic signals generated by geophysical flows have certain advantages, which can provide continuous real-time monitoring of geological disasters that occurred hundreds of kilometers away and even far, and provide important information for disaster early warning and post-disaster assessment. Taking the fall processes of granular flows as research objects, a series of physical model experiments of granular flows was designed and conducted here with the kinematic process and seismic signals of granular flows being recorded; the characteristics of the seismic signals under the influence of particle size were detailed analyzed. The results show that ① at a constant granular flow volume, the maximum amplitude of the seismic signal is between 17.33g and 39.21g, which increases with the increase of particle size; ② at a constant granular flow volume, the average value of seismic envelope and Arias intensity increase with the increase of particle size; ③ the frequency of seismic signal obtained on laboratory scale experiment with particle diameter from 2 to 4 mm is between 16.95 and 23.02 kHz; at a constant granular flow volume, the average frequency decreases with the increase of particle size. The above results can provide a theoretical basis for a deeper understanding of the influencing factors on landquakes, establishment of disaster potential regional monitoring and early warning system, rapid post-disaster assessment of major geological disasters, and development of emergency response measures.

参考文献/References:

[1] 黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009,28(6):1239-1249.
HUANG Run-qiu.Mechanism and Geomechanical Modes of Landslide Hazards Triggered by Wenchuan 8.0 Earthquake[J].Chinese Journal of Rock Mecha-nics and Engineering,2009,28(6):1239-1249.
[2] ARRAN M I,MANGENEY A,DE ROSNY J,et al.Laboratory Landquakes:Insights from Experiments into the High-frequency Seismic Signal Generated by Geophysical Granular Flows[J].Journal of Geophysical Research:Earth Surface,2021,126(5):006172.
[3] TURNER A K,SCHUSTER R L.Landslides:Investigation and Mitigation[M].Washington DC:National Academy Press,1996.
[4] NEUENDORF K K E,MEHL JR J P,JACKSON J A.Glossary of Geology[M].5th ed.Alexandria:American Geosciences Institute,2011.
[5] 程谦恭,张倬元,黄润秋.高速远程崩滑动力学的研究现状及发展趋势[J].山地学报,2007,25(1):72-84.
CHENG Qian-gong,ZHANG Zhuo-yuan,HUANG Run-qiu.Study on Dynamics of Rock Avalanches:State of the Art Report[J].Journal of Mountain Science,2007,25(1):72-84.
[6] 林棋文,程谦恭,李 坤,等.高速远程滑坡碎屑化运动机理研究综述[J].工程地质学报,2021,DOI:10.13544/j.cnki.jeg.2021-0035.
LIN Qi-wen,CHENG Qian-gong,LI Kun,et al.Review on Fragmentation-related Dynamics of Rock Ava-lanches[J].Journal of Engineering Geology,2021,DOI:10.13544/j.cnki.jeg.2021-0035.
[7] 王玉峰,林棋文,李 坤,等.高速远程滑坡动力学研究进展[J].地球科学与环境学报,2021,43(1):164-181.
WANG Yu-feng,LIN Qi-wen,LI Kun,et al.Review on Rock Avalanche Dynamics[J].Journal of Earth Sciences and Environment,2021,43(1):164-181.
[8] LAN H X,ZHOU C H,WANG L J,et al.Landslide Hazard Spatial Analysis and Prediction Using GIS in the Xiaojiang Watershed,Yunnan,China[J].Engineering Geology,2004,76(1/2):109-128.
[9] LAN H X,DEREK MARTIN C,LIM C H.Rockfall Analyst:A GIS Extension for Three-dimensional and Spatially Distributed Rockfall Hazard Modeling[J].Computers & Geosciences,2007,33(2):262-279.
[10] LAN H X,DEREK MARTIN C,ZHOU C H,et al.Rockfall Hazard Analysis Using LiDAR and Spatial Modeling[J].Geomorphology,2010,118(1/2):213-223.
[11] 兰恒星,仉义星,伍宇明.岩体结构效应与长远程滑坡动力学[J].工程地质学报,2019,27(1):108-122.
LAN Heng-xing,ZHANG Yi-xing,WU Yu-ming.Ef-fect of Rock Mass Structure on the Dynamics of Long-runout Landslide[J].Journal of Engineering Geology,2019,27(1):108-122.
[12] LAN H X,ZHANG Y X,MACCIOTTA R,et al.The Role of Discontinuities in the Susceptibility,Development,and Runout of Rock Avalanches:A Review[J].Landslides,2022,19(6):1391-1404.
[13] 刘传正.论崩塌滑坡-碎屑流高速远程问题[J].地质论评,2017,63(6):1563-1575.
LIU Chuan-zheng.Research on High Speed and Long-distance of the Avalanches or Landslide-debris Stre-ams[J].Geological Review,2017,63(6):1563-1575.
[14] 汪发武.地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J].工程地质学报,2019,27(1):98-107.
WANG Fa-wu.Liquefactions Caused by Structure Co-llapse and Grain Crushing of Soils in Rapid and Long Runout Landslides Triggered by Earthquakes[J].Journal of Engineering Geology,2019,27(1):98-107.
[15] BARTALI R,NAHMAD-MOLINARI Y,RODRÍGUEZ-LIÑÁN G M,et al.Gravity-driven Monodisperse Avalanches:Inertial- to Frictional-dominated Flow[J].Rock Mechanics and Rock Engineering,2020,53(8):3507-3520.
[16] CAGNOLI B,ROMANO G P.Effects of Flow Volu-me and Grain Size on Mobility of Dry Granular Flows of Angular Rock Fragments:A Functional Relationship of Scaling Parameters[J].Journal of Geophysical Research:Solid Earth,2012,117(B2):B02207.
[17] LI K,WANG Y F,LIN Q W,et al.Experiments on Granular Flow Behavior and Deposit Characteristics:Implications for Rock Avalanche Kinematics[J].Landslides,2021,18(5):1779-1799.
[18] 李 坤,程谦恭,林棋文,等.高速远程滑坡颗粒流研究进展[J].地球科学,2022,47(3):893-912.
LI Kun,CHENG Qian-gong,LIN Qi-wen,et al.State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics[J].Earth Science,2022,47(3):893-912.
[19] 许 强.对地质灾害隐患早期识别相关问题的认识与思考[J].武汉大学学报(信息科学版),2020,45(11):1651-1659.
XU Qiang.Understanding and Consideration of Related Issues in Early Identification of Potential Geoha-zards[J].Geomatics and Information Science of Wuhan University,2020,45(11):1651-1659.
[20] FAVREAU P,MANGENEY A,LUCAS A,et al.Nu-merical Modeling of Landquakes[J].Geophysical Research Letters,2010,37(15):043512.
[21] CHEN C H,CHAO W A,WU Y M,et al.A Seismological Study of Landquakes Using a Real-time Broad-band Seismic Network[J].Geophysical Journal International,2013,194(2):885-898.
[22] CHAO W A,ZHAO L,CHEN S C,et al.Seismology-based Early Identification of Dam-formation Landquake Events[J].Scientific Reports,2016,6:19259.
[23] CHAO W A,WU Y M,ZHAO L,et al.A First Near Real-time Seismology-based Landquake Monitoring System[J].Scientific Reports,2017,7:43510.
[24] RAO N P,REKAPALLI R,SRINAGESH D,et al.Sei-smological Rockslide Warnings in the Himalaya[J].Science,2021,372:247.
[25] WANG Y F,CHENG Q G,ZHU Q.Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies[J].Canadian Geotechnical Journal,2015,52(2):167-181.
[26] 黄兴辉,李正媛,余 丹,等.使用宽频带地震记录研究2017年6月24日茂县新磨滑坡的动力学过程[J].地球物理学报,2018,61(10):4055-4062.
HUANG Xing-hui,LI Zheng-yuan,YU Dan,et al.Dynamic Processes of the 24 June 2017 Xinmo Landslide in Maoxian Revealed by Broadband Seismic Records[J].Chinese Journal of Geophysics,2018,61(10):4055-4062.
[27] 赵 娟,漆静晨,杨佳琛,等.基于地震信号反演滑坡动力学机制[J].大地测量与地球动力学,2019,39(10):1007-1012.
ZHAO Juan,QI Jing-chen,YANG Jia-chen,et al.Inverted Landslide Dynamics Based on Seismic Signals[J].Journal of Geodesy and Geodynamics,2019,39(10):1007-1012.
[28] 许世民,殷跃平,邢爱国.基于地震信号的贵州纳雍崩塌-碎屑流运动特征分析[J].中国地质灾害与防治学报,2020,31(2):1-8.
XU Shi-min,YIN Yue-ping,XING Ai-guo,et al.Cha-racteristic Analysis of the Nayong Rock Avalanche's Kinematics Based on Seismic Signals[J].The Chinese Journal of Geological Hazard and Control,2020,31(2):1-8.
[29] 许世民.基于滑震信号分析的特大崩滑灾害数值模拟研究[D].上海:上海交通大学,2020.
XU Shi-min.Characteristic Analysis of the Nayong Rock Avalanche's Kinematics Based on Seismic Signals[D].Shanghai:Shanghai Jiao Tong University,2020.
[30] 严 炎,崔一飞,周开来,等.基于地震动信号分析的地质灾害过程重构方法研究与应用[J].工程地质学报,2021,29(1):125-136.
YAN Yan,CUI Yi-fei,ZHOU Kai-lai,et al.Research and Application of Geological Hazards Process Reconstruction Based on Seismic Signal Analysis[J].Journal of Engineering Geology,2021,29(1):125-136.
[31] ALLSTADT K.Extracting Source Characteristics and Dynamics of the August 2010 Mount Meager Landslide from Broadband Seismograms[J].Journal of Geophysical Research:Earth Surface,2013,118(3):1472-1490.
[32] EKSTRÖM G,STARK C P.Simple Scaling of Catastrophic Landslide Dynamics[J].Science,2013,339:1416-1419.
[33] COOK K L,REKAPALLI R,DIETZE M,et al.Detection and Potential Early Warning of Catastrophic Flow Events with Regional Seismic Networks[J].Science,2021,374:87-92.
[34] 李 俊,陈宁生,赵苑迪.基于地震波解译的2000年易贡滑坡-碎屑流动力学过程分析[J].水利水电技术,2018,49(10):142-149.
LI Jun,CHEN Ning-sheng,ZHAO Yuan-di,et al.Analysis on Debris Flow Dynamic Process of 2000 Yi-gong Landslide Interpreted Based on Seismic Wave[J].Water Resources and Hydropower Engineering,2018,49(10):142-149.
[35] 曾 求,储日升,盛敏汉,等.四川丹巴梭坡滑坡微震信号初探[J].中国地震,2021,37(2):300-308.
ZENG Qiu,CHU Ri-sheng,SHENG Min-han,et al.Preliminary Study on Microseismic Signals of Danba Suopo Landslide in Sichuan Province[J].Earthquake Research in China,2021,37(2):300-308.
[36] DEPARIS J,JONGMANS D,COTTON F,et al.Ana-lysis of Rock-fall and Rock-fall Avalanche Seismograms in the French Alps[J].Bulletin of the Seismological Society of America,2008,98(4):1781-1796.
[37] HIBERT C,MANGENEY A,GRANDJEAN G,et al.Automated Identification,Location,and Volume Estimation of Rockfalls at Piton de la Fournaise Volcano[J].Journal of Geophysical Research:Earth Surface,2014,119(5):1082-1105.
[38] LEVY C,MANGENEY A,BONILLA F,et al.Friction Weakening in Granular Flows Deduced from Seismic Records at the Soufrière Hills Volcano,Mont-serrat[J].Journal of Geophysical Research:Solid Ear-th,2015,120(11):7536-7557.
[39] DAMMEIER F,MOORE J R,HASLINGER F,et al.Characterization of Alpine Rockslides Using Statistical Analysis of Seismic Signals[J].Journal of Geophysical Research:Earth Surface,2011,116(F4):F04024.
[40] FARIN M,MANGENEY A,TOUSSAINT R,et al.Characterization of Rockfalls from Seismic Signal:Insights from Laboratory Experiments[J].Journal of Geophysical Research:Solid Earth,2015,120(10):7102-7137.
[41] FARIN M,MANGENEY A,DE ROSNY J,et al.Link Between the Dynamics of Granular Flows and the Ge-nerated Seismic Signal:Insights from Laboratory Experiments[J].Journal of Geophysical Research:Earth Surface,2018,123(6):1407-1429.
[42] FARIN M,MANGENEY A,DE ROSNY J,et al.Relations Between the Characteristics of Granular Co-lumn Collapses and Resultant High-frequency Seismic Signals[J].Journal of Geophysical Research:Earth Surface,2019,124(12):2987-3021.
[43] 邓凯丰,程谦恭,林棋文,等.碎屑流撞击地面的震动信号特征分析[J].工程地质学报,2020,DOI:10.13544/j.cnki.jeg.2020-281.
DENG Kai-feng,CHENG Qian-gong,LIN Qi-wen,et al.Characteristic Analysis of the Seismic Signal for Granular Flow Impacting the Ground[J].Journal of Engineering Geology,2020,DOI:10.13544/j.cnki.jeg.2020-281.
[44] LIN Q W,WANG Y F,CHENG Q G,et al.Characteristics of the Seismic Signal Generated by Fragmental Rockfalls:Insight from Laboratory Experiments[J].Journal of Geophysical Research:Solid Earth,2022,127(11):025096.
[45] 杨宗佶,刘 刚,刘世皓,等.碎屑流-堵河震动频谱特征识别的试验研究[J].灾害学,2021,36(4):19-26.
YANG Zong-ji,LIU Gang,LIU Shi-hao,et al.Experiment on the Identification of Seismic Spectrum Cha-racteristics of Granular Flow Blocking Rivers[J].Journal of Catastrophology,2021,36(4):19-26.
[46] SALÓ L,COROMINAS J,LANTADA N,et al.Seismic Energy Analysis as Generated by Impact and Fragmentation of Single-block Experimental Rockfalls[J].Journal of Geophysical Research:Earth Surface,2018,123(6):1450-1478.
[47] FENG Z Y,ZHUANG R C.Characteristics of Seismic and Acoustic Signals of Rock Falls:An Experimental Study[J].Landslides,2021,18(11):3695-3706.
[48] BACHELET V,MANGENEY A,TOUSSAINT R,et al.Acoustic Emissions of Nearly Steady and Uniform Granular Flows:A Proxy for Flow Dynamics and Velocity Fluctuations[J].arXiv,2021,DOI:10.48550/arXiv.2101.04161.
[49] FARIN M,MANGENEY A,DE ROSNY J,et al.Experimental Validation of Theoretical Methods to Estimate the Energy Radiated by Elastic Waves During an Impact[J].Journal of Sound and Vibration,2016,362:176-202.
[50] PAN C P,ZHENG B,WU Y Z,et al.Detrended Fluctuation Analysis of Human Brain Electroencephalogram[J].Physics Letters A,2004,329(1/2):130-135.
[51] KWAPIEN J,OSWIECIMKA P,DRZDZ S.Detrended Fluctuation Analysis Made Flexible to Detect Ran-ge of Cross-correlated Fluctuations[J].Physical Review E,2015,92(5):052815.
[52] PENG C K,BULDYREV S V,HAVLIN S,et al.Mosaic Organization of DNA Nucleotides[J].Physical Review E,1994,49(2):1685-1689.
[53] MOVAHED M S,JAFARI G R,GHASEMI F,et al.Multifractal Detrended Fluctuation Analysis of Sunspot Time Series[J].Journal of Statistical Mechanics:Theory and Experiment,2006,2006(2):P02003.
[54] 霍鹏举,史云鹏,朱长发,等.小波去噪在数字信号去噪中的应用[J].电脑知识与技术,2019,15(17):196-198.
HUO Peng-ju,SHI Yun-peng,ZHU Chang-fa,et al.The Application of Wavelet De-noising in the Digital Signal De-noising[J].Computer Knowledge and Te-chnology,2019,15(17):196-198.
[55] 邓凯丰.岩崩块石冲击与破碎过程震动信号特征与反演分析[D].成都:西南交通大学,2021.
DENG Kai-feng.Seismic Signal Characteristics and Inversion Analysis of Rockfall Stone Impact and Frag-mentation[D].Chengdu:Southwest Jiaotong University,2021.
[56] ARIAS A.A Measure of Earthquake Intensity[M]∥HANSEN R.Seismic Design for Nuclear Power Pla-nts.Cambridge:MIT Press,1970:438-483.
[57] FARIN M,TSAI V C,LAMB M P,et al.A Physical Model of the High-frequency Seismic Signal Generated by Debris Flows[J].Earth Surface Processes and Landforms,2019,44(13):2529-2543.
[58] HIBERT C,EKSTRÖM G,STARK C P.The Relationship Between Bulk-mass Momentum and Short-period Seismic Radiation in Catastrophic Landslides[J].Journal of Geophysical Research:Earth Surface,2017,122(5):1201-1215.
[59] HUANG C J.Monitoring the Ground Vibrations of Debris Flows Using Geophones[R].Taibei:The Soil and Water Conservation Bureau,Council of Agriculture,2004.
[60] HUANG C J,YIN H Y,CHEN C Y,et al.Ground Vibrations Produced by Rock Motions and Debris Flows[J].Journal of Geophysical Research:Earth Surface,2007,112(F2):F02014.
[61] 李 伟,俞言祥,肖 亮.阿里亚斯强度衰减关系分析[J].地震学报,2017,39(6):921-929,976.
LI Wei,YU Yan-xiang,XIAO Liang.Attenuation Relationship of Arias Intensity[J].Acta Seismologica Si-nica,2017,39(6):921-929,976.
[62] 李雪婧,徐伟进,高孟潭.芦山地震强地面运动之阿里亚斯强度及Newmark位移特征研究[J].地震学报,2021,43(6):768-786.
LI Xue-jing,XU Wei-jin,GAO Meng-tan.Characteristics of Arias Intensity and Newmark Displacement of Strong Ground Motion in Lushan Earthquake[J].Acta Seismologica Sinica,2021,43(6):768-786.
[63] VILAJOSANA I,SURIÑACH E,ABELLÁN A,et al.Rockfall Induced Seismic Signals:Case Study in Mon-tserrat,Catalonia[J].Natural Hazards and Earth System Sciences,2008,8(4):805-812.
[64] YAN Y,CUI Y F,HUANG X H,et al.Combining Seismic Signal Dynamic Inversion and Numerical Modeling Improves Landslide Process Reconstruction[J].Earth Surface Dynamics,2022,10(6):1233-1252.

相似文献/References:

[1]王运生,全清,罗永红,等.四川芦山Ms7.0级地震的地质环境影响分析[J].地球科学与环境学报,2013,35(02):92.
 WANG Yun-sheng,QUAN Qing,LUO Yong-hong,et al.Geological Environmental Influence of Lushan Ms7.0 Earthquake in Sichuan[J].Journal of Earth Sciences and Environment,2013,35(01):92.
[2]宋彦辉,李忠生,高虎艳,等.西安三类勘察场地隐伏地裂缝识别特征[J].地球科学与环境学报,2015,37(04):94.
 SONG Yan-hui,LI Zhong-sheng,GAO Hu-yan,et al.Recognition Features of Non-outcropping Ground Fissures for the Third Investigation Site in Xi’an[J].Journal of Earth Sciences and Environment,2015,37(01):94.
[3]彭建兵,马润勇,范 文,等.汶川大震的科学思考[J].地球科学与环境学报,2009,31(01):1.
 PENG Jian-bing,MA Run-yong,FAN Wen,et al.Science Contemplation for Wenchuan Earthquake of 12 May, 2008[J].Journal of Earth Sciences and Environment,2009,31(01):1.
[4]邓亚虹,彭建兵,卢全中,等.地铁工程地质灾害危险性综合评估定量方法——以西安地铁一号线为例[J].地球科学与环境学报,2009,31(03):291.
 DENG Ya-hong,PENG Jian-bing,LU Quan-zhong,et al.Quantification Grading Method in Subway Engineering Risk Assessment of Geological Disasters——Taking No.1 Subway in Xi'an as an Example[J].Journal of Earth Sciences and Environment,2009,31(01):291.
[5]马润勇,彭建兵,袁志东,等.青藏高原隆升的黄土高原构造侵蚀效应[J].地球科学与环境学报,2007,29(03):289.
 MA Run-yong,PENG Jian-bing,YUAN Zhi-dong,et al.Geological Hazard Effect in Loess Plateau due to Qinghai-Tibet Plateau Uplift[J].Journal of Earth Sciences and Environment,2007,29(01):289.
[6]胡建刚,刘勇平,姜海波.怒江左岸小型水电工程地质环境适宜性评价[J].地球科学与环境学报,2007,29(03):294.
 HU Jian-gang,LIU Yong-ping,JIANG Hai-bo.Geological Environment Feasibility for Constructing Small-Scale Hydropower Engineering on Nujiang River Left Bank[J].Journal of Earth Sciences and Environment,2007,29(01):294.
[7]田梅青,姜振泉,刘炜金,等.山东省栖霞市泥石流灾害的 成生环境及危险性趋势分区评价[J].地球科学与环境学报,2005,27(04):24.
 TIAN Mei-qing,JIANG Zhen-quan,LIU Wei-jin,et al.Zonal Evaluation on Formation Environment and Dangerous Trend of Debris Flow in Qixia City of Shandong Province[J].Journal of Earth Sciences and Environment,2005,27(01):24.
[8]朱良峰,吴信才,殷坤龙,等.基于信息量模型的中国滑坡灾害风险区划研究[J].地球科学与环境学报,2004,26(03):52.
 ZHU Liang-feng,WU Xin-cai,YIN Kun-long,et al.Risk zonation of landslide in China based on information content model[J].Journal of Earth Sciences and Environment,2004,26(01):52.
[9]陈练武.耀州区地质灾害分区特征及防治对策[J].地球科学与环境学报,2004,26(03):74.
 CHEN Lian-wu.Characteristics and prevention countermeasures of geological hazards zones in Yaozhou district[J].Journal of Earth Sciences and Environment,2004,26(01):74.
[10]李守定,白亚恒,姜越,等.基于内外动力耦合成因理论的新疆地质灾害气象预警显式统计模型[J].地球科学与环境学报,2017,39(02):286.
 LI Shou-ding,BAI Ya-heng,JIANG Yue,et al.Explicit Statistic Meteorological Early-warning Model of Geological Hazards in Xinjiang, China Based on the Genesis Theory of Endogenic and Exogenic Coupling[J].Journal of Earth Sciences and Environment,2017,39(01):286.

备注/Memo

备注/Memo:
收稿日期:2022-10-03; 修回日期:2022-12-03投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(42177131,41877226,41877237)
作者简介:罗 肖(1996-),男,四川蒲江人,工学硕士研究生,E-mail:luoxiao@my.swjtu.edu.cn。
*通讯作者:程谦恭(1962-),男,甘肃静宁人,教授,博士研究生导师,理学博士,E-mail:chengqiangong@swjtu.edu.cn。
更新日期/Last Update: 2023-01-30