|本期目录/Table of Contents|

[1]吕洪涛,包 含*,兰恒星,等.基于热红外响应的岩体单裂隙埋藏深度探测方法[J].地球科学与环境学报,2022,44(06):1048-1065.[doi:10.19814/j.jese.2022.05013]
 LYU Hong-tao,BAO Han*,LAN Heng-xing,et al.Detection Method of Buried Depth of Single Crack in Rock Mass Based on Thermal Infrared Response[J].Journal of Earth Sciences and Environment,2022,44(06):1048-1065.[doi:10.19814/j.jese.2022.05013]
点击复制

基于热红外响应的岩体单裂隙埋藏深度探测方法(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第06期
页码:
1048-1065
栏目:
纪念刘国昌先生诞辰110周年专辑
出版日期:
2022-11-15

文章信息/Info

Title:
Detection Method of Buried Depth of Single Crack in Rock Mass Based on Thermal Infrared Response
文章编号:
1672-6561(2022)06-1048-18
作者:
吕洪涛1包 含1*兰恒星23李 黎4陈卫昌4晏长根1张景峰1
(1. 长安大学 公路学院, 陕西 西安 710064; 2. 长安大学 地质工程与测绘学院,陕西 西安 710054; 3. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101; 4. 中国文化遗产研究院,北京 100029)
Author(s):
LYU Hong-tao1 BAO Han1* LAN Heng-xing23 LI Li4 CHEN Wei-chang4 YAN Chang-gen1 ZHANG Jing-feng1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 4. China Academy of Cultural Heritage, Beijing 100029, China)
关键词:
岩体裂隙 埋藏深度 传热特性 热激励 红外热成像 无损探测 热流密度 裂隙直径
Keywords:
crack of rock mass buried depth heat transfer characteristic thermal excitation infrared thermal imaging nondestructive detection heat flux density diameter of crack
分类号:
P642.3; TU45
DOI:
10.19814/j.jese.2022.05013
文献标志码:
A
摘要:
探测岩体内部裂隙的埋藏深度是揭示岩体内部结构状态的重要环节。基于一维热传导理论,提出了一种通过岩体表面温差获取裂隙埋藏深度的探测方法,并结合室内试验和数值模拟分析了热流密度、裂隙直径、裂隙埋藏深度对含单裂隙岩体传热特性及裂隙埋藏深度探测结果的影响。结果表明:裂隙对岩体中的热流传递造成了阻碍,利用红外热成像技术可以有效识别直径较大、埋藏深度较浅的内部裂隙; 裂隙投影区与完整岩石表面温差受热流密度、裂隙埋藏深度和裂隙直径的影响,热流密度较大,识别效果较好,且加热过程中最大温差与热流密度、裂隙直径成线性关系,与裂隙埋藏深度成对数正态分布关系; 裂隙埋藏深度的计算误差主要受加热时间的影响,当加热时长为计算深度变化率最小值所对应时刻时,产生的误差较小,模拟试验中的最小误差仅为0.6%; 使用2 000 W?m-2的热流密度,加热20 min可探测埋藏深度为6 cm内的裂隙,延长加热时间和增大加热功率均可提升裂隙埋藏深度的探测能力。因此,利用红外热成像技术探测浅层裂隙埋藏深度具有较高的可行性,对于岩体结构敏感性较强、有特殊使用需求的岩体工程将体现重要的应用价值。
Abstract:
Detecting the buried depth of cracks is an important link to reveal the internal structural state of rock mass. Based on the one-dimensional heat conduction theory, a detection method to obtain the buried depth of cracks through the surface temperature difference of rock mass was proposed, and the influences of heat flux density, diameter and buried depth of crack on the heat transfer characteristics and buried depth detection of rock mass with single crack were analyzed by laboratory tests and numerical simulation. The results show that the cracks hinder the heat flow transfer in rock mass, and the internal cracks with large diameter and shallow buried depth can be effectively identified by infrared thermal imaging technology; the surface temperature difference between the projection area of crack and intact rock is affected by heat flux density, buried depth and diameter of crack; the heat flux density is large, and the identification effect is good; the maximum temperature difference in the heating process is linear with the heat flux density and diameter of crack, and logarithmic normal distribution with buried depth of crack; the calculation error of buried depth of crack is mainly affected by heating time, when the heating time is the moment corresponding to the minimum value of the calculation depth change rate, the error is smaller, and the minimum error in the simulation test is only 0.6%; the cracks within the buried depth of 6 cm can be detected by heating for 20 min with the heat flux density of 2 000 W·m-2, and the detection for buried depth of crack can be improved by extending heating time and increasing heating power. Therefore, it is feasible to detect the buried depth of shallow cracks by infrared thermal imaging technology, which will have important application for rock mass engineering with strong structural sensitivity and special use requirements.

参考文献/References:

[1] 孟国涛,方 丹,李良权,等.含优势断续节理组的工程岩体等效遍布节理模型强度参数研究[J].岩石力学与工程学报,2013,32(10):2115-2121.
MENG Guo-tao,FANG Dan,LI Liang-quan,et al.Study of Equivalent Strength Parameters of Ubiquitous Joint Model for Engineering Rock Mass with Preferred Intermittent Joints[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(10):2115-2121.
[2] 兰恒星,包 含,孙巍锋,等.岩体多尺度异质性及其力学行为[J].工程地质学报,2022,30(1):37-52.
LAN Heng-xing,BAO Han,SUN Wei-feng,et al.Multi-scale Heterogeneity of Rock Mass and Its Mechanical Behavior[J].Journal of Engineering Geology,2022,30(1):37-52.
[3] 张淑坤,王来贵,陆 璐,等.赋存结构面粉砂质泥岩力学性能弱化机制研究[J].岩土工程学报,2020,42(11):2015-2023.
ZHANG Shu-kun,WANG Lai-gui,LU Lu,et al.Weakening Effects of Occurrence Structural Plane on Mechanical Properties of Silty Mudstone[J].Chinese Journal of Geotechnical Engineering,2020,42(11):2015-2023.
[4] BAO H,LIU C Q,LIANG N,et al.Analysis of Large Deformation of Deep-buried Brittle Rock Tunnel in Strong Tectonic Active Area Based on Macro and Microcrack Evolution[J].Engineering Failure Analysis,2022,138:106351.
[5] 包 含,常金源,伍法权,等.基于统计岩体力学的岩体强度特征分析[J].岩土力学,2015,36(8):2361-2369.
BAO Han,CHANG Jin-yuan,WU Fa-quan,et al.Analysis of Strength Characteristics of Rock Mass Based on Statistical Mechanics of Rock Mass[J].Rock and Soil Mechanics,2015,36(8):2361-2369.
[6] 吴志勇,聂德新,李雪峰,等.基于数码图像的岩体结构信息采集处理研究[J].岩石力学与工程学报,2003,22(增2):2568-2571.
WU Zhi-yong,NIE De-xin,LI Xue-feng,et al.Information Interpretation of Rock Mass Structure Based on Digital Image[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(S2):2568-2571.
[7] 陈宝林,王 宇,王浩宇,等.基于SLIC超像素分割与合并的隧道围岩节理裂隙识别[J].公路交通科技,2022,39(7):139-146,156.
CHEN Bao-lin,WANG Yu,WANG Hao-yu,et al.Identification of Tunnel Surrounding Rock Joint and Fracture Based on SLIC Super Pixel Segmentation and Combination[J].Journal of Highway and Transportation Research and Development,2022,39(7):139-146,156.
[8] 兰恒星,伍宇明,李全文,等.龙马溪组页岩三维缝网重构及分形分析[J].工程地质学报,2017,25(6):1557-1565.
LAN Heng-xing,WU Yu-ming,LI Quan-wen,et al.Reconstruction and Fractal Analysis for Three-dimensional Fracture Network of Longmaxi Shale[J].Journal of Engineering Geology,2017,25(6):1557-1565.
[9] CHEN J H,LAN H X,MACCIOTTA R,et al.Anisotropy Rather Than Transverse Isotropy in Longmaxi Shale and the Potential Role of Tectonic Stress[J].Engineering Geology,2018,247:38-47.
[10] ZHOU Z Q,SUN J W,LAI Y B,et al.Study on Size Effect of Jointed Rock Mass and Influencing Factors of the REV Size Based on the SRM Method[J].Tunnelling and Underground Space Technology,2022,127:104613.
[11] 包 含,胥勋辉,兰恒星,等.考虑各向异性形貌特征的岩体结构面刚度计算模型[J].交通运输工程学报,2022,22(2):160-175.
BAO Han,XU Xun-hui,LAN Heng-xing,et al.Calculation Model of Rock Joint Stiffness Considering Anisotropic Morphology Characteristics[J].Journal of Traffic and Transportation Engineering,2022,22(2):160-175.
[12] DU Y H,BAO H,YIN P J,et al.Study on the Anisotropic Shear Strength of Rough Joint via 3D Scanning,3D Printing,and 3D Discrete-element Modeling[J].International Journal of Geomechanics,2022,22(6):04022058.
[13] YANG K,HU Z Q,LIANG Y S,et al.Automated Extraction of Ground Fissures Due to Coal Mining Subsidence Based on UAV Photogrammetry[J].Remote Sensing,2022,14(5):1071.
[14] 刘雄贞.三峡工程岩体结构面刚度特性实验[J].长江科学院院报,1998,15(2):26-28.
LIU Xiong-zhen.Experimental Study on Stiffness Characteristics of Rockmass Structural Face in TGP[J].Journal of Yangtze River Scientific Research Institute,1998,15(2):26-28.
[15] 康红普,王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
KANG Hong-pu,WANG Jin-hua.Rock Bolting Theo-ry and Complete Technology for Coal Roadways[M].Beijing:China Coal Industry Publishing House,2007.
[16] 秦 臻,黄波林,张 鹏.基于探地雷达检测的岩溶岸坡内部宏观裂隙响应规律研究[J].工程地质学报,2021,29(3):628-639.
QIN Zhen,HUANG Bo-lin,ZHANG Peng.GPR Detection Based Response Law of Macro-cracks in Karst Slope[J].Journal of Engineering Geology,2021,29(3):628-639.
[17] LI L,WANG R,PENG T X,et al.Identification of Geo-bodies in Borehole Radar Image Based on Curvelet Transform[J].Journal of Applied Geophysics,2021,189:104325.
[18] KRÜGENER K,SCHWERDTFEGER M,BUSCH S F,et al.Terahertz Meets Sculptural and Architectural Art:Evaluation and Conservation of Stone Objects with T-ray Technology[J].Scientific Reports,2015,5:14842.
[19] LI Z H,YIN S,NIU Y,et al.Experimental Study on the Infrared Thermal Imaging of a Coal Crack Under the Coupled Effects of Stress and Gas[J].Journal of Natural Gas Science and Engineering,2018,55:444-451.
[20] 王少锋,李夕兵,王德明,等.地下煤火燃空区覆岩裂隙分布模型和局部化特征[J].岩土力学,2015,36(增2):104-110.
WANG Shao-feng,LI Xi-bing,WANG De-ming,et al.Distribution Model and Localization Features of Rock Fissures over Combustion Space Area of Underground Coal Fire[J].Rock and Soil Mechanics,2015,36(S2):104-110.
[21] 吴宜峰,赵金鑫,乔云飞,等.砖石质不可移动文物本体监测/检测技术研究进展[J].防灾减灾工程学报,2022,42(3):623-637.
WU Yi-feng,ZHAO Jin-xin,QIAO Yun-fei,et al.A Review of Monitoring/Detecting Technology for Immovable Brick and Stone Cultural Relics[J].Journal of Disaster Prevention and Mitigation Engineering,2022,42(3):623-637.
[22] VUKSANOVIC B,BOSTANUDIN N,HIDZIR H,et al.Discarding Unwanted Features from GPR Images Using 2DPCA and ICA Techniques[J].International Journal of Information and Electronics Engineering,2013,3(3):317.
[23] MENG T H,DU R Q,HOU Z,et al.THz Spectra-based SVM Prediction Model for Yungang Grottoes Samples[J].Journal of Archaeological Science,2015,55:280-285.
[24] 周强国,黄志明.太赫兹成像技术研究进展及应用[J].红外技术,2022,44(4):328-342.
ZHOU Qiang-guo,HUANG Zhi-ming.Review of Research and Application of Terahertz Imaging Techno-logy[J].Infrared Technology,2022,44(4):328-342.
[25] ZHENG D,TAN S H,LI X X,et al.Research on the Infrared Thermographic Detection of Concrete Under Solar Heating[J].Advances in Civil Engineering,2021,2021:6692729.
[26] 戚 磊,郭朝辉.混凝土内部缺陷红外无损检测多因素影响分析[J].公路,2014,59(8):234-240.
QI Lei,GUO Chao-hui.Analysis of Multi-factor Impact on Infrared Thermal Wave Nondestructive Test-ing of Internal Defects of Concrete[J].Highway,2014,59(8):234-240.
[27] 陈国庆,张 岩,李 阳,等.岩石真三轴加载破坏的热-声前兆信息链初探[J].岩石力学与工程学报,2021,40(9):1764-1776.
CHEN Guo-qing,ZHANG Yan,LI Yang,et al.Thermal-acoustic Precursor Information Chain of Rock Failure Under True Triaxial Loading[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1764-1776.
[28] GUERIN A,JABOYEDOFF M,COLLINS B D,et al.Remote Thermal Detection of Exfoliation Sheet Deformation[J].Landslides,2021,18(3):865-879.
[29] 黄继忠,章云梦,张 悦,等.无损检测技术在文物表面空鼓病害探查中的应用[J].上海大学学报(自然科学版),2022,28(4):656-667.
HUANG Ji-zhong,ZHANG Yun-meng,ZHANG Yue,et al.Application of Non-destructive Testing Technique for Detecting Surface Detachment in Cultural Heritage Buildings[J].Journal of Shanghai University(Natural Science Edition),2022,28(4):656-667.
[30] 金玫秀,朱士虎,王 通,等.基于卤素灯激励的红外热成像裂纹无损检测研究[J].红外技术,2022,44(4):421-427.
JIN Mei-xiu,ZHU Shi-hu,WANG Tong,et al.Nondestructive Crack Testing via Infrared Thermal Imaging Using Halogen Lamp Excitation[J].Infrared Technology,2022,44(4):421-427.
[31] 刘状壮,张有为,季鹏宇,等.电热型融雪沥青路面传热特性研究[J].吉林大学学报(工学版),2022,DOI:10.13229/j.cnki.jdxbgxb20210671.
LIU Zhuang-zhuang,ZHANG You-wei,JI Peng-yu,et al.Study on Heat Transfer Characteristics of Electric Heating Snow Melting Asphalt Pavement[J].Journal of Jilin University(Engineering and Technology Edition),2022,DOI:10.13229/j.cnki.jdxbgxb20210671.
[32] 张洪济.热传导[M].北京:高等教育出版社,1992.
ZHANG Hong-ji.Heat Conduction[M].Beijing:Higher Education Press,1992.
[33] 王 欣,赵美英,顾亦磊,等.热源温度场叠加法在薄壁结构热分析中的应用[J].中国空间科学技术,2007,27(3):64-67.
WANG Xin,ZHAO Mei-ying,GU Yi-lei,et al.Application of Heat-source Method on Sheet Structure[J].Chinese Space Science and Technology,2007,27(3):64-67.
[34] 张家荣,赵廷元.工程常用物质的热物理性质手册[M].北京:新时代出版社,1987.
ZHANG Jia-rong,ZHAO Ting-yuan.Handbook of Thermo-physical Parameter for Usual Used Material in Engineering[M].Beijing:New Times Press,1987.
[35] 马庆芳,方荣生,项立成,等.实用热物理性质手册[M].北京:中国农业机械出版社,1986.
MA Qing-fang,FANG Rong-sheng,XIANG Li-cheng,et al.Handbook of Practical Thermal Physical Property[M].Beijing:China Agriculture Machine Press,1986.
[36] 王永茂,郭兴旺,李日华.红外检测中缺陷大小和深度的测量[J].激光与红外,2002,32(6):404-406.
WANG Yong-mao,GUO Xing-wang,LI Ri-hua.Mea-suring Defect Diameter and Depth in Infrared Testing[J].Laser and Infrared,2002,32(6):404-406.
[37] 杜玉玺,胡振琪,葛运航,等.距离对不同强度热源红外测温影响及补偿[J].红外技术,2019,41(10):976-981.
DU Yu-xi,HU Zhen-qi,GE Yun-hang,et al.Distance Influence and Compensation of Infrared Temperature Measurement with Different Intensity Heat Sources[J].Infrared Technology,2019,41(10):976-981.
[38] 孙继平,范伟强.矿井红外热成像远距离测温误差分析与精确测温方法[J].煤炭学报,2022,47(4):1709-1722.
SUN Ji-ping,FAN Wei-qiang.Error Analysis and Accurate Temperature Measurement Method of Infrared Thermal Imaging Long-distance Temperature Mea-surement in Underground Mine[J].Journal of China Coal Society,2022,47(4):1709-1722.
[39] 宋远佳,张 炜,王冬冬,等.热波检测缺陷定量识别与图像重建研究[J].材料工程,2012,30(5):39-46.
SONG Yuan-jia,ZHANG Wei,WANG Dong-dong,et al.Defect Quantitative Identification and Image Reconstruction Based on Thermal Wave Inspection[J].Journal of Materials Engineering,2012,30(5):39-46.
[40] 康 爽,陈长征,周 勃,等.基于温度阈值风电叶片缺陷识别的红外检测研究[J].太阳能学报,2020,41(8):337-341.
KANG Shuang,CHEN Chang-zheng,ZHOU Bo,et al.Infrared Detection Research on Wind Turbine Blade Defects Identification Based on Temperature Thres-hold[J].Acta Energiae Solaris Sinica,2020,41(8):337-341.
[41] 霍 雁,张存林.碳纤维复合材料内部缺陷深度的定量红外检测[J].物理学报,2012,61(14):199-205.
HUO Yan,ZHANG Cun-lin.Quantitative Infrared Prediction Method for Defect Depth in Carbon Fiber Reinforced Plastics Composite[J].Acta Physica Sinica,2012,61(14):199-205.
[42] 赵 勇,曾昭发,李 静,等.地球物理探测技术在石窟寺裂隙渗流中的应用现状及展望[J].地球物理学进展,2022,37(2):928-937.
ZHAO Yong,ZENG Zhao-fa,LI Jing,et al.Application Status and Prospect of Geophysical Detection Technology in Crack Seepage of Grottoes[J].Progress in Geophysics,2022,37(2):928-937.
[43] 满 轲,刘晓丽,王 驹,等.高放废物地质处置切缝药包定向爆破技术研究[J].工程力学,2019,36(增1):316-323,328.
MAN Ke,LIU Xiao-li,WANG Ju,et al.Cutting Seam Cartridges of Directional Blasting Technology for the Geological Disposal of High-level Radioactive Waste[J].Engineering Mechanics,2019,36(S1):316-323,328.
[44] 兰恒星,陈俊辉,伍宇明.三轴压缩试验前后含气页岩微纳尺度裂隙空间分布特征研究[J].工程地质学报,2018,26(1):24-35.
LAN Heng-xing,CHEN Jun-hui,WU Yu-ming.Spatial Characterization of Micro- and Nanoscale Micro-cracks in Gas Shale Before and After Triaxial Compression Test[J].Journal of Engineering Geology,2018,26(1):24-35.
[45] LAN H X,TIAN N M, LI L P,et al.Kinematic-based Landslide Risk Management for the Sichuan-Tibet Grid Interconnection Project(STGIP)in China[J].Engineering Geology,2022,308:106823.
[46] LAN H X,ZHANG Y X,MACCIOTTA R,et al.The Role of Discontinuities in the Susceptibility,Development,and Run Out of Rock Avalanches:A Review[J].Landslides,2022,19:1391-1404.
[47] LAN H X,CHEN J H,MACCIOTTA R.Universal Confined Tensile Strength of Intact Rock[J].Scienti-fic Reports,2019,9:6170.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-05-09
基金项目:国家重点研发计划项目(2019YFC1520601); 国家自然科学基金项目(42177142,42041006,41941019); 中央高校基本科研业务费专项资金项目(300102212213)
作者简介:吕洪涛(1996-),男,湖北襄阳人,工学硕士研究生,E-mail:353235188@qq.com。
*通讯作者:包 含(1988-),男,河南商丘人,教授,博士研究生导师,工学博士,E-mail:baohangeo@163.com。

更新日期/Last Update: 2022-11-25