|本期目录/Table of Contents|

[1]李久乐,徐柏青,林树标,等.青藏高原南部枪勇错冰前湖泊沉积记录的近千年来冰川与气候变化[J].地球科学与环境学报,2011,33(04):402-411.
 LI Jiu-le,XU Bai-qing,LIN Shu-biao,et al.Glacier and Climate Changes over the Past Millennium Recorded by Proglacial Sediment Sequence from Qiangyong Lake, Southern Tibetan Plateau[J].Journal of Earth Sciences and Environment,2011,33(04):402-411.
点击复制

青藏高原南部枪勇错冰前湖泊沉积记录的近千年来冰川与气候变化(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第33卷
期数:
2011年第04期
页码:
402-411
栏目:
水资源与环境
出版日期:
2011-12-15

文章信息/Info

Title:
Glacier and Climate Changes over the Past Millennium Recorded by Proglacial Sediment Sequence from Qiangyong Lake, Southern Tibetan Plateau
文章编号:
1672-6561(2011)04-0402-10
作者:
李久乐12徐柏青1林树标12高少鹏1
1.中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室,北京100085; 2.中国科学院研究生院,北京100049
Author(s):
LI Jiu-le12XU Bai-qing1LIN Shu-biao12GAO Shao-peng1
1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China; 2. Graduate University ofChinese Academy of Sciences, Beijing 100049, China
关键词:
气候变化融化强度冰川沉积湖芯冰前湖泊枪勇错青藏高原
Keywords:
climate change melting strength glacier sediment lacustrine core proglacial lake Qiangyong Lake Tibetan Plateau
分类号:
P532;P512.4+2
DOI:
-
文献标志码:
A
摘要:
以钻取自青藏高原南部大枪勇错冰前湖中的1.06m湖芯为研究对象,对沉积物样品进行了粒度、磁化率、元素含量、碳酸盐和总有机碳含量等多项指标的分析测定;在明确了沉积物来源的基础上,分析讨论了各指标变化的影响因素及其具体气候环境指示意义;结合沉积序列放射性同位素定年结果,对湖芯中各指标进行了综合对比分析,恢复了青藏高原南部枪勇错地区近千年来的冰川与气候变化。结果表明:1.06m沉积序列年代跨度为自公元11世纪前后至今的逾千年时间;沉积物主要来源于枪勇冰川融水对冰川上部沉降粉尘颗粒的携带,而沉积物的粒度、磁化率及各组分含量与区域气候条件下枪勇冰川融化强度有密切关系;自公元11世纪至今,青藏高原南部地区环境温度总体呈现波动中逐渐升高的趋势,枪勇冰川随之逐渐融化退缩。具体来说,公元11世纪初,该地区环境温度较低,枪勇冰川融化较弱;公元11世纪中叶至13世纪初,该地区气候温暖,枪勇冰川融化较强;公元14世纪开始至18世纪中叶,该地区进入小冰期,枪勇冰川融化强度显著降低;自公元18世纪中后叶至今,该地区环境温度急剧升高,枪勇冰川呈加剧融化退缩趋势。
Abstract:
The 1.06 m lacustrine core, which was from the proglacial Da Qiangyong Lake, southern Tibetan Plateau, was investigated; multi-indicators including grain size, magnetic susceptibility, element content, carbonate content and total organic carbon content in the sediment sample were analyzed. Based on the understanding of sediment source, the factors on these indicators and their significance on climate and environment were discussed. Associated with the radioisotope dating result, the above indicators were comprehensively compared, and the glacier and climate changes over the past millennium from Qiangyong Lake, southern Tibetan Plateau, were reconstructed. The results showed that the time scale of the 1.06 m sediment sequence was about one millennium since the 11th century; the sediment was mainly composed of dust particles which were carried by meltwater of Qiangyong glacier, and the variations of grain size, magnetic susceptibility and chemical contents of the sediment were closely related to the melting strength of Qiangyong glacier influenced by the regional climate change; the environmental temperature in southern Tibetan Plateau gradually increased with little fluctuation since the 11th century, and then Qiangyong glacier gradually melted. Particularly, the environmental temperature was lower and Qiangyong glacier weakly melted in southern Tibetan Plateau at the beginning of the 11th century; the climate was warm and the glacier strongly melted from the middle of the 11th century to the beginning of the 13th century; the Little Ice Age occurred and the melting of glacier greatly weakened from the beginning of the 14th century to the middle of the 18th century; the environmental temperature increased rapidly and the melting of glacier greatly strengthened since the middle-late of the 18th century.

参考文献/References:

[1] Karlén W.Lacustrine Sediment Studies:a Technique to Obtain a Continous Record of Holocene Glacier Variations[J].Geografiska Annaler:Series A,Physical Geography,1981,63(3/4):273-281.
[2] Karlén W,Rosqvist G.Glacier Fluctuations Recorded in Lacustrine Sediments on Mount Kenya[J].National Geographic Research,1988,4:219-232.
[3] Matthews J A,Dahl S O,Nesje A,et al.Holocene Glacier Variations in Central Jotunheimen,Southern Norway Based on Distal Glaciolacustrine Sediment Cores[J].Quaternary Science Reviews,2000,19(16):1625-1647.
[4] Nesje A,Matthews J A,Dahl S O,et al.Holocene Glacier Fluctuations of Flatebreen and Winter-precipitation Changes in the Jostedalsbreen Region,Western Norway,Based on Glaciolacustrine Sediment Records[J].The Holocene,2001,11(3):267-280.
[5] Bakke J,Lie Ø,Nesje A,et al.Utilizing Physical Sediment Variability in Glacier-fed Lakes for Continuous Glacier Reconstructions During the Holocene,Northern Folgefonna,Western Norway[J].The Holocene,2005,15(2):161-176.
[6] Nesje A,Dahl S O,Andersson C,et al.The Lacustrine Sedimentary Sequence in Sygneskardvatnet Western Norway:a Continuous,High-resolution Record of the Jostedalsbreen Ice Cap During the Holocene[J].Quaternary Science Reviews,2000,19(11):1047-1065.
[7] Karlén W.Lacustrine Sediments and Tree-limit Variations as Indicators of Holocene Climatic Fluctuations in Lappland,Northern Sweden[J].Geografiska Annaler:Series A,Physical Geography,1976,58(1/2):1-34.
[8] Beuning K R M,Talbot M R,Kelts K.A Revised 30 000-year Palaeoclimatic and Palaeohydrologic History of Lake Albert,East Africa[J].Palaeogeography Palaeoclimatology Palaeoecology,1997,136(1/2):259-279.
[9] Fritz S C,Baker P A,Seltzer G O,et al.Quaternary Glaciation and Hydrologic Variation in the South American Tropics as Reconstructed from the Lake Titicaca Drilling Project[J].Quaternary Research,2007,68(3):410-420.
[10] Tiercelin J J,Gibert E,Umer M,et al.High-resolution Sedimentary Record of the Last Deglaciation from a High-altitude Lake in Ethiopia[J].Quaternary Science Reviews,2008,27(5/6):449-467.
[11] Zale R,Karlén W.Lake Sediment Cores from the Antarctic Peninsula and Surrounding Islands[J].Geografiska Annaler:Series A,Physical Geography,1989,71(3/4):211-220.
[12] Webster J,Hawes I,Downes M,et al.Evidence for Regional Climate Change in the Recent Evolution of a High Latitude Proglacial Lake[J].Antarctic Science,1996,8(1):49-59.
[13] Rosqvist G,Schuber P.Millennial-scale Climate Changes on South Georgia,Southern Ocean[J].Quaternary Research,2003,59(3):470-475.
[14] Borghini F,Colacevich A,Bargagli R.Water Geochemistry and Sedimentary Pigments in Northern Victoria Land Lakes,Antarctica[J].Polar Biology,2007,30(9):1173-1182.
[15] Rosqvist G.Proglacial Lacustrine Sediments from El Altar,Ecuador:Evidence for Late-Holocene Climatic Change[J].The Holocene,1995,5(1):111-117.
[16] Leonard E M.Glaciological and Climatic Controls on Lake Sedimentation,Canadian Rocky Mountains[J].Zeitschrift für Gletscherkunde und Glazialgeologie,1985,21(1/2):35-42.
[17] Leonard E M.The Relationship Between Glacial Activity and Sediment Production:Evidence from a 4 450-year Varve Record of Neoglacial Sedimentation in Hector Lake,Alberta,Canada[J].Journal of Paleolimnology,1997,17(3):319-330.
[18] Rosqvist G,Jonsson C,Yam R,et al.Diatom Oxygen Isotopes in Proglacial Lake Sediments from Northern Sweden:a 5 000-year Record of Atmospheric Circulation[J].Quaternary Science Reviews,2004,23(7/8):851-859.
[19] Yao T D,Wang Y Q,Liu S Y,et al.Recent Glacial Retreat in High Asia and Its Impact on Water Resource in Northwest China[J].Science in China:Series D,2004,47(12):1065-1075.
[20] Yang B,Bräuning A,Dong Z B,et al.Late Holocene Monsoonal Temperate Glacier Fluctuations on the Tibetan Plateau[J].Global and Planetary Change,2008,60(1/2):126-140.
[21] 罗日升,曹 峻,刘耕年,等.西藏枪勇冰川冰下富碎屑化学沉淀特征与冰下过程[J].地理学报,2003,58(5):757-764.
[22] Owen L A,Finkel R C,Barnard P L,et al.Climatic and Topographic Controls on the Style and Timing of Late Quaternary Glaciation Throughout Tibet and the Himalaya Defined by 10Be Cosmogenic Radionuclide Surface Exposure Dating[J].Quaternary Science Reviews,2005,24(12/13):1391-1411.
[23] 李炳元,王富葆,张青松.西藏第四纪地质[M].北京:科学出版社,1983.
[24] 夏代祥,刘世坤.西藏自治区区域地质志[M].武汉:中国地质大学出版社,1993.
[25] Wu G J,Xu B Q,Zhang C L,et al.Geochemistry of Dust Aerosol over the Eastern Pamirs[J].Geochimica et Cosmochimica Acta,2009,73(4):977-989.
[26] Goldberg E D.Geochronology with 210Pb[C]∥International Atomic Energy Agency.Symposium Proceedings(1962)of Radioactive Dating.Vienna:International Atomic Energy Agency,1963:121-131.
[27] Robbins J A,Geochemical and Geophysical Applications of Radioactive Lead[C]∥Nriagu J O.The Biogeochemistry of Lead in the Environment.Amsterdam:Elsevier,1978:285-393.
[28] Evans D W,Alberts J J,Clark R A.Reversible Ion-exchange Fixation of Cesium-137 Leading to Mobilization from Reservoir Sediments[J].Geochimica et Cosmochimica Acta,1983,47(6):1041-1046.
[29] Jansson P,Rosqvist G,Schneider T.Glacier Fluctuations,Suspended Sediment Flux and Glacio-lacustrine Sediments[J].Geografiska Annaler:Series A,Physical Geography,2005,87:37-50.
[30] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.
[31] Wake C P,Mayewski P A,Li Z,et al.Modern Eolian Dust Deposition in Central Asia[J].Tellus B,1994,46(3):220-233.
[32] Smith N D.Sedimentary Processes and Patterns in a Glacier-fed Lake with Low Sediment Input[J].Canadian Journal of Earth Sciences,1978,15(5):741-756.
[33] Wentworth C K.A Scale of Grade and Class Terms for Clastic Sediments[J].The Journal of Geology,1922,30(5):377-392.
[34] 孙知明,胡守云,马醒华.现代湖泊沉积物中磁性矿物的研究及其环境意义[J].地球物理学报,1996,39(2):178-187.
[35] 朱立平,陈 玲,张平中,等.环境磁学反映的藏南沉错地区1 300年来冷暖变化[J].第四纪研究,2001,21(6):520-527.
[36] 符超峰,宋友桂,强小科,等.环境磁学在古气候环境研究中的回顾与展望[J].地球科学与环境学报,2009,31(3):312-322.
[37] 李世杰,区荣康,朱照宇,等.24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化[J].湖泊科学,1998,10(2):58-65.
[38] 沈 吉,张恩楼,夏威岚.青海湖近千年来环境变化的湖泊沉积记录[J].第四纪研究,2001,21(6):508-513.
[39] 沈华东,于 革.青藏高原兹格塘错流域50年来湖泊水量对气候变化响应的模拟研究[J].地球科学与环境学报,2011,33(3):282-287.
[40] Barnes M A,Barnes W C.Organic Compounds in Lake Sediments[C]∥Lerman A.Lakes:Chemistry,Geology,Physics.New York:Springer-Verlag,1978:127-152.
[41] Meyers P A,Ishiwatari R.Lacustrine Organic Geochemistry:an Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments[J].Organic Geochemistry,1993,20(7):867-900.
[42] 金章东.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报,2011,33(1):34-44.
[43] 周才平,欧阳华,王勤学,等.青藏高原主要生态系统净初级生产力的估算[J].地理学报,2004,59(1):74-79.
[44] Krishnamurthy R V,Bhattacharya S K,Kusumgar S.Palaeoclimatic Changes Deduced from 13C/12C and C/N Ratios of Karewa Lake Sediments,India[J].Nature,1986,323:150-152.
[45] 朱立平,鞠建廷,王君波,等.湖芯沉积物揭示的末次冰消开始时期普莫雍错湖区环境变化[J].第四纪研究,2006,26(5):772-780.
[46] Brohan P,Kennedy J J,Harris I,et al.Uncertainty Estimates in Regional and Global Observed Temperature Changes:a New Data Set from 1850[J].Journal of Geophysical Research,2006,111(D12106).DOI:10.1029/2005JD006548.
[47] 吴艳宏,李世杰,夏威岚.可可西里苟仁错湖泊沉积物元素地球化学特征及其环境意义[J].地球科学与环境学报,2004,26(3):64-68.

相似文献/References:

[1]张继效,王伟铭,高峰.云南剑川地区象鼻洞遗址孢粉组合和古环境[J].地球科学与环境学报,2014,36(04):134.
 ZHANG Ji-xiao,WANG Wei-ming,GAO Feng.Palynological Assemblages and Palaeoenvironment of Xiangbidong Site in Jianchuan Area of Yunnan[J].Journal of Earth Sciences and Environment,2014,36(04):134.
[2]曹军骥,占长林.黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J].地球科学与环境学报,2011,33(02):177.
 CAO Jun-ji,ZHAN Chang-lin.Research Significance and Role of Black Carbon in the Global Climate and Environmental Systems[J].Journal of Earth Sciences and Environment,2011,33(04):177.
[3]沈华东,于革.青藏高原兹格塘错流域50年来湖泊水量对气候变化响应的模拟研究[J].地球科学与环境学报,2011,33(03):282.
 SHEN Hua-dong,YU Ge.Simulation Study on Hydrological Response of Water Quantity to Climate Change in Zigetang Lake of Tibetan Plateau During the Past 50 Years[J].Journal of Earth Sciences and Environment,2011,33(04):282.
[4]李佩成.关于气候变化的哲学思考[J].地球科学与环境学报,2008,30(04):331.
 LI Pei-cheng.Considerations on Climate Change Based on Philosophic Principle[J].Journal of Earth Sciences and Environment,2008,30(04):331.
[5]任朝霞,杨达源.西北干旱区近50年气候变化特征与趋势[J].地球科学与环境学报,2007,29(01):99.
 REN Zhao-xia,YANG Da-y uan.Trend and Characteristics of Climatic Change in Arid Region of Northwest China in Resent 50 Years[J].Journal of Earth Sciences and Environment,2007,29(04):99.
[6]郑国璋,岳乐平.中国北方第四纪磁性地层记录的 古地磁极倒转与气候变化耦合关系[J].地球科学与环境学报,2005,27(03):91.
 ZHENG Guo-zhang,YUE Le-ping.Coupling of paleomagnetic polarity reverse with climatic change recoded by magnetostratigraphy in Northern China during Quaternary[J].Journal of Earth Sciences and Environment,2005,27(04):91.
[7]William A. Gough.北美地区大湖水位的变化研究[J].地球科学与环境学报,2005,27(04):8.
 William A. Gough.Water Levels of the Great Lakes of North America[J].Journal of Earth Sciences and Environment,2005,27(04):8.
[8]景民昌,杨革联,孙乃达.末次间冰期 —末次冰期柴达木盆地东部气候演化形式[J].地球科学与环境学报,2004,26(03):83.
 JING Min-chang,YANG Ge-lian,SUN Nai-da.Study on the climatic changes between the last interglacial age and the last glacial age recorded by ostracoda in eastern Qaidam Basin[J].Journal of Earth Sciences and Environment,2004,26(04):83.
[9]方巍*,张霄智,齐媚涵.MEPM模型:基于深度学习的多变量厄尔尼诺-南方涛动预测模型[J].地球科学与环境学报,2024,46(03):285.[doi:10.19814/j.jese.2023.08029]
 FANG Wei*,ZHANG Xiao-zhi,QI Mei-han.MEPM: MultivariateENSOPredictionModel Based on Deep Learning[J].Journal of Earth Sciences and Environment,2024,46(04):285.[doi:10.19814/j.jese.2023.08029]

备注/Memo

备注/Memo:
收稿日期:2011-04-28
基金项目: 国家重点基础研究发展计划项目(2009CB723901); 中国科学院重点基础研究发展计划项目( KZCX2-YW-146; KZCX2-YW-Q09-03)
作者简介: 李久乐(1983-),男,山东高密人,理学博士研究生,从事自然地理学研究。E-mail:jlli@itpcas.ac.cn

更新日期/Last Update: 2011-12-20