|本期目录/Table of Contents|

[1]张 健,董 淼,王蓓羽,等.陕西关中盆地地热资源及壳幔温度结构的地球物理分析[J].地球科学与环境学报,2021,43(01):150-163.[doi:10.19814/j.jese.2020.07005]
 ZHANG Jian,DONG Miao,WANG Bei-yu,et al.Geophysical Analysis of Geothermal Resources and Temperature Structure of Crust and Upper Mantle Beneath Guanzhong Basin of Shaanxi, China[J].Journal of Earth Sciences and Environment,2021,43(01):150-163.[doi:10.19814/j.jese.2020.07005]
点击复制

陕西关中盆地地热资源及壳幔温度结构的地球物理分析(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第01期
页码:
150-163
栏目:
应用地球物理
出版日期:
2021-01-15

文章信息/Info

Title:
Geophysical Analysis of Geothermal Resources and Temperature Structure of Crust and Upper Mantle Beneath Guanzhong Basin of Shaanxi, China
作者:
张 健董 淼王蓓羽艾依飞方 桂
(中国科学院大学 中国科学院计算地球动力学重点实验室,北京 100049)
Author(s):
ZHANG Jian DONG Miao WANG Bei-yu AI Yi-fei FANG Gui
(Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
地热资源 地球物理分析 莫霍面 居里面 地壳温度 地震剪切波 流变边界层 上地幔热结构 关中盆地
Keywords:
Key words: geothermal resource geophysical analysis Moho surface Curie surface crustal temperature seismic shear wave rheological boundary layer thermal structure of upper mantle Guanzhong Basin
分类号:
P314
DOI:
10.19814/j.jese.2020.07005
文献标志码:
A
摘要:
陕西关中盆地地下热水资源丰富,是中国典型的隐伏型中、低温地热资源分布区。为研究关中盆地中、低温地热系统形成机理,认识深部热源条件,利用地球物理方法分析了该区壳幔温度结构。结果表明:计算得到的居里面平均深度为25.0 km,莫霍面平均深度为36.6 km,地壳平均地温梯度为22.60 ℃·km-1,咸礼断阶、西安凹陷、固市凹陷地壳地温梯度高于平均值,是地热地质条件较好的构造分区。咸阳、西安之下,上地幔存在向南下倾的高温带,咸阳北侧约175 km深度是一个温度大于1 500 ℃的高温区; 其上,莫霍面、居里面上隆,形成高温基底,加热沉积地层中的地下水。富平、渭南之间,上地幔存在“下沉”低温区,低温区北、南两侧约175 km深度分别对应温度大于1 450 ℃的高温区; 高温区之上,莫霍面、居里面上隆,形成聚热中心,为地表地热资源提供稳定热源条件。总体上,关中盆地新生代潜水受莫霍面、居里面上隆带入的地幔热量传导加热,热物质随莫霍面、居里面向上抬升,是盆地中、低温地热田的深部热源。上地幔流变边界层控制研究区重要的构造活动,此边界层受周缘构造带不同动力作用,在重力均衡调整过程中,导致深大断裂活动,进而引起地壳深、浅部水体沿断裂带热对流,形成带状分布热泉。
Abstract:
Guanzhong Basin in Shaanxi is a typical area with concealed medium-low temperature geothermal resources in China, and has abundant underground hot water resources. In order to study the formation mechanism and heat source conditions of the medium-low temperature geothermal system of Guanzhong Basin, the temperature structure of crust and upper mantle was analyzed by the geophysical method. The results show that the average depths of Moho and Curie surfaces in Guanzhong Basin are 36.6 km and 25.0 km respectively, and the crustal average geothermal gradient is 22.60 ℃·km-1. The crustal temperature is higher than the average value in Xianli fault terrace, Xi’an sag and Gushi sag, which are the tectonic area with better geothermal geological conditions. Underground in Xianyang and Xi’an, there is a southward inclined geotropics in the upper mantle, and there is a hidden high-temperature zone above 1 500 ℃ in the depth of 175 km to the northern side of Xianyang. Above the high-temperature zone, Moho and Curie surfaces uplift with high geothermal gradient, forming a high-temperature basement, heating the groundwater in the sedimentary strata. Between Fuping and Weinan, there is a “sinking” low-temperature zone in the upper mantle, and there are high-temperature areas greater than 1 450 ℃ at the depth of about 175 km corresponds to the southern and northern sides of the “sinking” low-temperature zone. Above the high-temperature areas, Moho and Curie surfaces also uplift to form a heat accumulation center, providing stable heat source conditions for surface geothermal resources. Generally, the Cenozoic phreatic water in Guanzhong Basin is heated by mantle heat conduction brought by upper uplift of Curie and Moho surfaces, and the thermal material uplifts with Moho and Curie surfaces, which provides stable deep heat source for the basin’s medium-low temperature geothermal fields. The rheological boundary layer of the upper mantle plays an important role in tectonic activities in the research area. The rheological boundary layer is affected by different dynamic forces of the surrounding tectonic belt,which would lead the activity of deep large faults in process of gravity equilibrium adjustment, and then cause the thermal convection of deep and shallow water bodies in the crust along the fault zone, forming a zonal distribution hot spring.

参考文献/References:

[1] 彭建兵,张 骏,苏生瑞,等.渭河盆地活动断裂与地质灾害[M].西安:西北大学出版社,1992.
PENG Jian-bing,ZHANG Jun,SU Sheng-rui,et al.Active Faults and Geological Hazards in Weihe Basin[M].Xi’an:Northwest University Press,1992
[2] 刘 方,金海峰,穆根胥,等.陕西省关中盆地地热资源调查评价报告[R].西安:陕西省地质调查院,2009.
LIU Fang,JIN Hai-feng,MU Gen-xu,et al.Investigation and Evaluation Report of Geothermal Resources in Guanzhong Basin,Shaanxi Province[R].Xi’an:Shaanxi Institute of Geological Survey,2009.
[3] 王 斌,郑洪波,王 平,等.渭河盆地新生代地层与沉积演化研究:现状和问题[J].地球科学进展,2013,28(10):1126-1135.
WANG Bin,ZHENG Hong-bo,WANG Ping,et al.The Cenozoic Strata and Depositional Evolution of Weihe Basin:Progresses and Problems[J].Advances in Earth Science,2013,28(10):1126-1135.
[4] 孟庆任.秦岭的由来[J].中国科学:地球科学,2017,47(4):412-420.
MEMG Qing-ren.Origin of the Qinling Mountains[J].Science China:Earth Sciences,2017,47(4):412-420.
[5] 钱 会.陕西华清池温泉热储温度的估算[J].西安地质学院学报,1989,11(1):71-80.
QIAN Hui.Calculation of the Temperatures for the Hot Water Aquifer in the Huaqing Hot Spring,Shaanxi Province[J].Journal of Xi’an College of Geology,1989,11(1):71-80.
[6] QIN D J,TURNER J V,PANG Z H.Hydrogeoche-mistry and Groundwater Circulation in the Xi’an Geothermal Field,China[J].Geothermics,2005,34(4):471-494.
[7] 马致远,余 娟,李 清,等.关中盆地地下热水环境同位素分布及其水文地质意义[J].地球科学与环境学报,2008,30(4):396-401.
MA Zhi-yuan,YU Juan,LI Qing,et al.Environmental Isotope Distribution and Hydrologic Geologic Sense of Guanzhong Basin Geothermal Water[J].Journal of Earth Sciences and Environment,2008,30(4):396-401.
[8] 马致远,何 丹,郑 磊,等.关中盆地腹部地下热水成因类型的同位素水文地球化学证据[J].第四纪研究,2014,34(5):1023-1035.
MA Zhi-yuan,HE Dan,ZHENG Lei,et al.Isotope and Hydrogeochemistry Evidence of Genetic Types for Geothermal Water in the Center Part of Guanzhong Basin[J].Quaternary Sciences,2014,34(5):1023-1035.
[9] 何 丹,马致远,王疆霞,等.关中盆地深部地下热水残存沉积水的同位素证据[J].地球科学与环境学报,2014,36(4):117-126.
HE Dan,MA Zhi-yuan,WANG Jiang-xia,et al.Isotopic Evidence of Remaining Sedimentary Water in the Deep Geothermal Water of Guanzhong Basin[J].Journal of Earth Sciences and Environment,2014,36(4):117-126.
[10] 罗 璐,庞忠和,罗 霁,等.惰性气体同位素确定地热流体循环深度[J].地质科学,2014,49(3):888-898.
LUO Lu,PANG Zhong-he,LUO Ji,et al.Noble Gas Isotopes to Determine the Depth of the Geothermal Fluid Circulation[J].Chinese Journal of Geology,2014,49(3):888-898.
[11] 罗 璐,朱 霞,何春艳,等.陕西咸阳地热田地热流体成因研究[J].地质论评,2019,65(6):1422-1430.
LUO Lu,ZHU Xia,HE Chun-yan,et al.Study on the Genesis of Geothermal Fluid in Xianyang Geothermal Field[J].Geological Review,2019,65(6):1422-1430.
[12] FENG M,AN M J.Lithospheric Structure of the Chinese Mainland Determined from Joint Inversion of Regional and Teleseismic Rayleigh-wave Group Velocities[J].Journal of Geophysical Research:Solid Earth,2010,115(B6):B06317.
[13] ZHANG Y Q,VERGELY P,MERCIER J.Active Faulting in and Along the Qinling Range(China)Inferred from SPOT Imagery Analysis and Extrusion Tectonics of South China[J].Tectonophysics,1995,243(1/2):69-95.
[14] LIN A M,RAO G,YAN B.Flexural Fold Structures and Aactive Faults in the Northern-western Weihe Graben,Central China[J].Journal of Asian Earth Sciences,2015,114:226-241.
[15] 冯希杰,李晓妮,任 隽,等.渭河断裂深、中、浅和近地表显示[J].地震地质,2008,30(1):264-272.
FENG Xi-jie,LI Xiao-ni,REN Jun,et al.Manifestations of Weihe Fault at Deep,Middle,Shallow and Near-surface Depth[J].Seismology and Geology,2008,30(1):264-272.
[16] 丁雅丹,吴攀登,代俊宁.关中盆地地热流体空间分布特征分析[J].地下水,2017,39(3):42-43,147.
DING Ya-dan,WU Pan-deng,DAI Jun-ning.Spatial Distribution Characteristics of Geothermal Fluid in Guanzhong Basin[J].Ground Water,2017,39(3):42-43,147.
[17] 饶 松,李卫卫,姜光政,等.咸阳地热田钻孔温度测量及水动力系统[J].地质科学,2015,50(3):982-1000.
RAO Song,LI Wei-wei,JIANG Guang-zheng,et al.Borehole Temperature Logging and Water Dynamic System in the Xianyang Geothermal Field,Northwest China[J].Chinese Journal of Geology,2015,50(3):982-1000.
[18] 饶 松,姜光政,高雅洁,等.渭河盆地岩石圈热结构与地热田热源机理[J].地球物理学报,2016,59(6):2176-2190.
RAO Song,JIANG Guang-zheng,GAO Ya-jie,et al.The Thermal Structure of the Lithosphere and Heat Source Mechanism of Geothermal Field in Weihe Basin[J].Chinese Journal of Geophysics,2016,59(6):2176-2190.
[19] JIANG G Z,HU S B,SHI Y Z,et al.Terrestrial Heat Flow of Continental China:Updated Dataset and Tectonic Implications[J].Tectonophysics,2019,753:36-48.
[20] 胡国泽,滕吉文,阮小敏,等.秦岭造山带和邻域磁异常特征及结晶基底变异分析[J].地球物理学报,2014,57(2):556-571.
HU Guo-ze,TENG Ji-wen,RUAN Xiao-min,et al.Magnetic Anomaly Characteristics and Crystalline Basement Variation of the Qinling Orogenic Belt and Its Adjacent Areas[J].Chinese Journal of Geophysics,2014,57(2):556-571.
[21] 王谦身,滕吉文,张永谦,等.鄂尔多斯—中秦岭—四川东部的重力异常场与深部地壳结构[J].地球物理学报,2015,58(2):532-541.
WANG Qian-shen,TENG Ji-wen,ZHANG Yong-qian,et al.Gravity Anomalies and Deep Crustal Structure of the Ordos Basin-middle Qinling Orogen-eastern Sichuan Basin[J].Chinese Journal of Geophysics,2015,58(2):532-541.
[22] 安美建,石耀霖.中国大陆地壳和上地幔三维温度场[J].中国科学:D辑,地球科学,2007,37(6):736-745.
AN Mei-jian,SHI Yao-lin.Three-dimensional Thermal Structure of the Chinese Continental Crust and Upper Mantle[J].Science in China:Series D,Earth Sciences,2007,37(6):736-745.
[23] 司 芗,滕吉文,刘有山,等.秦岭造山带与南北相邻地带远震接收函数与地壳结构[J].地球物理学报,2016,59(4):1321-1334.
SI Xiang,TENG Ji-wen,LIU You-shan,et al.Crust Structure of the Qinling Orogenic and the Region on Its North and South Margins from Teleseismic Receiver Funtion[J].Chinese Journal of Geophysics,2016,59(4):1321-1334.
[24] OKUBO Y,TSU H,OGAWA K.Estimation of Curie Point Temperature and Geothermal Structure of Island Arcs of Japan[J].Tectonophysics,1989,159(3/4):279-290.
[25] TANAKA A,OKUBO Y,MATSUBAYASHI O.Curie Point Depth Based on Spectrum Analysis of the Magnetic Anomaly Data in East and Southeast Asia[J].Tectonophysics,1999,306(3/4):461-470.
[26] ZHANG J,WANG C Y,SHI Y L,et al.Three-dimensional Crustal Structure in Central Taiwan from Gra-vity Inversion with a Parallel Genetic Algorithm[J].Geophysics,2004,69(4):917-924.
[27] 张 健,王蓓羽,唐显春,等.华南陆缘高热流区的壳幔温度结构与动力学背景[J].地球物理学报,2018,61(10):3917-3932.
ZHANG Jian,WANG Bei-yu,TANG Xian-chun,et al.Temperature Structure and Dynamic Background of Crust and Mantle Beneath the High Heat Flow Area of the South China Continental Margin[J].Chinese Journal of Geophysics,2018,61(10):3917-3932.
[28] SOBOLEV S V,ZEYEN H,STOLL G,et al.Upper Mantle Temperatures from Teleseismic Tomography of French Massif Central Including Effects of Composition,Mineral Reactions,Anharmonicity,Anelasticity and Partial Melt[J].Earth and Planetary Science Letters,1996,139(1/2):147-163.
[29] SOBOLEV S V,ZEYEN H,GRANE T M,et al.Upper Mantle Temperatures and Lithosphere-asthenosphere System Beneath the French Massif Central Constrained by Seismic,Gravity,Petrologic and Thermal Observations[J].Tectonophysics,1997,275(1/2/3):143-164.
[30] GOES S,GOVERS R,VACHER P.Shallow Mantle Temperatures Under Europe from P and S Wave Tomography[J].Journal of Geophysical Research:Solid Earth,2000,105(B5):11153-11169.
[31] GOES S,VAN DER LEE S.Thermal Structure of the North American Uppermost Mantle Inferred from Seismic Tomography[J].Journal of Geophysical Research:Solid Earth,2002,107(B3):2050-2066.
[32] BHATTACHARYYA B K,LEU L K.Spectral Analysis of Gravity and Magnetic Anomalies Due to Two-dimensional Structures[J].Geophysics,1975,40(6):993-1013.

相似文献/References:

[1]张永红,刘冰,吴宏安,等.雄安新区2012~2016年地面沉降InSAR监测[J].地球科学与环境学报,2018,40(05):652.
 ZHANG Yong-hong,LIU Bing,WU Hong-an,et al.Ground Subsidence in Xiong’an New Area from 2012 to 2016 Monitored by InSAR Technique[J].Journal of Earth Sciences and Environment,2018,40(01):652.
[2]张 健,何雨蓓,范艳霞.松辽盆地地壳热结构与深部热源条件[J].地球科学与环境学报,2023,45(02):157.[doi:10.19814/j.jese.2022.07035]
 ZHANG Jian,HE Yu-bei,FAN Yan-xia.Crustal Thermal Structure and Deep Heat Source Conditions in Songliao Basin, NE China[J].Journal of Earth Sciences and Environment,2023,45(01):157.[doi:10.19814/j.jese.2022.07035]

备注/Memo

备注/Memo:
收稿日期:2020-07-06; 修回日期:2020-08-07投稿网址:http:∥jese.chd.edu.cn/
基金项目:中国科学院战略性先导科技专项项目(XDB42020104); 国家自然科学基金项目(41906056,U1701245)
作者简介:张 健(1963-),男,河南项城人,教授,博士研究生导师,理学博士,1980~1984年在西安地质学院(现长安大学)地球物理勘探专业攻读学士学位,E-mail:zhangjian@ucas.ac.cn。
更新日期/Last Update: 2021-03-10